De-anonymization Attacks on Metaverse

Yan Meng¹, Yuxia Zhan¹, Jiachun Li¹, Suguo Du¹, Haojin Zhu¹, and Xuemin (Sherman) Shen²

¹Shanghai Jiao Tong University ²University of Waterloo

May, 2023

OUTLINE

Background

Motivation

System Design

Evaluations

Discussions

Conclusion

Background

VR-driven Metaverse

□ Immerse experience & Advanced human-computer interaction

Undergoing rapid growth of market size

VR scenario^{1,2}

- 1. <u>https://up.enterdesk.com/edpic/bf/a2/91/bfa2919485d524f1477e06ba82a7e7bb.jpg</u>
- 2. <u>https://image11.m1905.cn/uploadfile/2018/0323/20180323091601495478.jpg</u>
- 3. https://www.grandviewresearch.com/industry-analysis/virtual-reality-vr-market

Global Market: \$28.4 Billion (2022)³ CAGR: 13.8% (2023-2030)

Anonymization in VR

User's real identity is masked by *avatar*

Avatar: a digital representation of the user in the virtual world

Convert real user to avatar

Various avatars in VR^{1,2}

1. https://news.zol.com.cn/764/7647534.html

2. https://www.youtube.com/watch?v=PWLPw4RE9Ig&t=18s

Anonymization in VR

User's real identity is masked by *avatar*

Avatar: a digital representation of the user in the virtual world

link user's real identity to his/her avatar?

Existing De-anonymization Attacks in VR

Traffic analysis solution

□ Side-channel attack based on **sensor** information

OVRSeen: traffic analysis (Trimananda et al, USENIX Security'22)

Face-Mic (Shi et al, MobiCom'22)

Existing De-anonymization Attacks in VR

□ **Traffic** analysis solution

□ Side-channel attack based on **sensor** information

□ Is it possible for the external attacker to perform a de-anonymization without requiring any permission?

□ Attack scenario: tracking users in *avatar-changeable* VR games or meetings

Motivation

Basic Insight

■ No matter how avatars are changes, the inherent and unique movement patterns are relatively stable

Validation of Insight

 \Box Two users, same avatars \rightarrow Different patterns \rightarrow Different features

$\Box \text{Different avatars} \rightarrow \text{Stable features}$

Attack model

Our proposed attack system: AvatarHunter

System Design

System Overflow of AvatarHunter

AvatarHunter consists of four modules:

- □ Attack Initialization
- Data Pre-processing
- □ Feature Extraction
- □ Identity Inference

Attack Initialization & Pre-processing

- Firstly, directly using existing gait recognition solution (i.e.,
 - GaitSet [1] in this study)
- $\Box \sqrt{}$ Appearance signature
- **X** Movement signature

[1] Chao et al., "Gaitset: Cross-view gait recognition through utilizing gait as a deep set," IEEE TPAMI, vol. 44, no. 7, pp. 3467–3478, 2022.

18

□ Unity-based solution

□ Various avatars

(b)

(c)

(d)

1

288°

□ Performance Improvement

□ From appearance feature to movement signature

Identity Inference

Classification model:

□ Pre-collected Gallery vs Test Datasets

□Random Forest based method

Evaluations

Dataset Construction

Experimental Platform

DVR device: Meta Oculus Quest 2

 \square VR applications: VRChat¹

VRChat

Dataset Construction

□ 10 Users, 10 Avatars, 4 cameras

□ Total 1000 trials (video clips)

Gallery: Testing = 3:7

10 Users

Views from 4 cameras

Overall Performance

Closed-world avatar setting: 92.1%

□ Open-world avatar setting: 66.9%

AvatarHunter (66.9%) vs BenchMark (29.7%)

Impact of Various Factors

Length of Recording Video

Frame length	10	20	30	60	90
ASR in scenario-1 (%)	87.0	91.6	92.1	93.0	93.4
ASR in scenario-2 (%)	63.6	65.3	66.9	65.9	65.0

□ Gallery Size

Gallery size	10%	30%	50%	70%	90%
ASR in scenario-1 (%)	78.8	92.1	94.6	94.0	98.0
ASR in scenario-2 (%)	63.0	66.9	64.0	62.7	66.0

Camera Number

Camera combination	F	FB	FR	FRL	FBRL
ASR in scenario-1 (%)	72.9	90.1	91.9	88.4	92.1
ASR in scenario-2 (%)	51.3	62.3	68.6	66.4	66.9

Discussions

Countermeasures

Detecting Suspicious Users in VR

□ Adding Noises during Avatar Generation

Restricted access control (invite uses they trust)

Limitations

□ Not Suitable for Non-humanoid Avatars

□ Pre-collecting victim's information in VR

Conclusions

Conclusion

□ Summary:

■ Propose AvatarHunter, a non-intrusive and user-unconscious de-anonymization attack in VR scenarios.

□ Leverage Unity-based feature extractor to characterize the victim's movement signature.

□ Proved to be effective and robust to various factors.

□Future Work

□ More universal attack scenarios.

□ Practical and useful countermeasures.

Conclusion

Thank you!

Yan Meng Assistant Professor Email: yan_meng@sjtu.edu.cn