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Abstract—In this study, we present WindTalker, a novel and practical keystroke inference framework that can be used to infer the
sensitive keystrokes on a mobile device through WiFi-based side-channel information. WindTalker is motivated from an observation
that keystrokes on mobile devices will lead to different hand coverage and the finger motions, which will introduce a unique interference
to the multi-path signals and can be reflected by the channel state information (CSI). An attacker can exploit the strong correlation
between the CSl fluctuation and the keystrokes to infer the user’s password input. Compared with the previous keystroke inference
approaches, WindTalker neither deploys external equipment physically close to the target device nor compromises the target device.
Instead, it employs a more practical setting by deploying a free public WiFi hotspot and collects the CSI data from the target device as
long as the device is connected to the hotspot. In addition, to improve inference accuracy and efficiency, it analyzes the WiFi traffic to
selectively collect CSl only for the sensitive period where password entering occurs. WindTalker can be implemented without the
requirement of visually seeing the target device, or installing any malware on the device. We tested Windtalker on several mobile
phones and performed a detailed case study to evaluate the practicality of the password inference towards Alipay, the largest mobile
payment platform in the world. Furthermore, we proposed a novel CSI| obfuscation countermeasure to thwart the inference attack. The
evaluation results show that the performance of WindTalker can be dramatically reduced by adopting the proposed countermeasures.

Index Terms—Channel state information, online payment, password inference, traffic analysis, wireless security
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INTRODUCTION

MARTPHONES and tablets are widely used for performing

privacy sensitive transactions of banking, payment, and
social applications. Unlike stationary devices connecting to a
secure network and sitting in a physically-secure space, these
mobile devices are often carried by a mobile user and con-
nected to a dynamic network where attackers can physically
approach the target user’s device and launch various direct
and indirect eavesdropping attacks. While direct eavesdrop-
ping attacks aim at directly observing the input of the target
device from its screen or keyboard, indirect eavesdropping
attacks, a.k.a. side-channel attacks make use of side channels
to infer the inputs on the target devices. Prior works [2], [3],
[4], [5], [6], [7], [8], [9], [10] have shown that both types of
attacks can be effective in certain conditions. Particularly for
the side-channel attacks, it is shown that the PIN number
and the words entered at keyboard can be inferred from the
electromagnetic signal at radio antenna [2], the acoustic sig-
nal at microphone [3], [4], [5], the visible light at camera [6],
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[7], and the motion status at motion sensors [8], [9], [10]. To
access the side channels, these works often assume either
external signal collector devices are physically close to the
target device (for example, 30 cm in [2]) or the sensors of the
target devices are compromised to provide side channel
information. However, in a mobile scenario, both assump-
tions are hardly true and the impact of attacks is thus limited.
In addition, the prior works have studied the keystroke infer-
ence aiming at achieving a high inference accuracy on a
series of keystrokes during a relatively-long period of time.
However, the keystrokes on a mobile device are not always
highly sensitive. Obviously, the eavesdropping attacker has
a greater interest in obtaining the payment PIN number in a
short moment than a regular typing information. Therefore,
to increase the inference accuracy and efficiency, the applica-
tion context information needs to be considered in the key-
stroke inference framework.

In this paper, we present WindTalker, a novel and practi-
cal keystroke inference framework that can be used to infer
sensitive keystrokes on a mobile device through WiFi sig-
nals. WindTalker is motivated from an observation that the
typing activity on mobile devices involves hand and the fin-
ger motions, which produce a recognizable interference to
the multi-path WiFi signals from the target device to the
WiFi router that connects to the device. Unlike prior side-
channel attacks or traditional CSI based gesture recognition,
WindTalker neither deploys external devices close to the tar-
get device nor compromises any part of the target device;
instead, WindTalker setups a ‘rogue’ hotspot to lure the tar-
get user with free WiFi service, which is easy-to-deploy and
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difficult-to-detect. As long as the target mobile device is con-
nected to the rogue WiFi hotspot, WindTalker intercepts the
WiFi traffic and selectively collects the channel state informa-
tion (CSI) between the target device and the hotspot.

WindTalker has three major technical challenges. i) The
impact of the hand and finger movement of keystrokes on
CSI waveforms is very subtle. An effective signal analysis
method is needed to analyze keystrokes from the limited
CSI. ii) The prior CSI collection method requires two WiFi
devices, one as a signal sender and the other as a signal
receiver, which are deployed close to the victim. A more flex-
ible and practical CSI collection method is highly desirable
for the mobile device scenario. iii) The key inference must be
done at some selective moments for obtaining a sensitive
keystroke, such as payment PIN number. Such context-
oriented CSI collection has not been addressed by prior
works. The contributions of our paper are as follows.

e We present a practical cross-layer based approach for
mobile payment password inference on smartphones
using public WiFi architecture. We propose a novel
password inference model which analyzes both phys-
ical layer information (CSI) and network layer traffic.

e We present a novel ICMP-based CSI collection
method, without compromising the victim’s device
or deploying an external device very close to the vic-
tim’s device. We develop an IP pool based method
to recognize the PIN input period. And we propose
an effective keystroke inference algorithm based on
the collected CSI.

e We perform extensive evaluations on password
inference at the mobile payment platform Alipay,
which is secured by the HTTPS protocol and thus
traditionally believed to be secure. We investigate
the impact of various factors on WindTalker and we
demonstrate that WindTalker can infer the PIN num-
ber at a high successful rate.

e We introduce some effective countermeasures to
thwart the inference attack. Especially, we propose
a novel CSI obfuscation algorithm to prevent the
attacker to collect the accurate CSI data without the
requirements of user’s participation. This counter-
measure could minimize the impact on the user
experience and we perform experiments to prove
its ability to reduce the attacking performance of
WindTalker.

The remainder of this paper is organized as follows. In
Section 2, we introduce the background of this work. In
Section 3, we introduce the research motivation by showing
the correlation of keystroke and CSI changing. We present
the detailed design in Section 4, which is followed by
Evaluation, Real-world experiment, Impact of various fac-
tors, Countermeasures, Limitations and Related work in
Sections 5, 6,7, 8,9 and 10, respectively. Finally, we conclude
this paper in Section 11.

2 BACKGROUND

In this section, we introduce our attack scenario, the over-
view of the keystroke inference methods, and preliminaries
of channel state information.
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Fig. 1. WiFi-based keystroke inference models.

2.1 Scenario

We consider a scenario where a user has a mobile device,
such as a smartphone and he or she is using the free public
WiFi through the device. It is a very common situation that
people could have in the shopping mall, the airport, and res-
taurants. A WiFi hotspot is set up at a corner or on the ceiling,
an unnoticeable location from the user’s view. The user
searches all the available WiFi signals at her device, and
chooses to connect with the WiFi hotspot if the name of the
hotspot “looks” good and the hotspot is authentication-free.
With the use of application layer security protocol (HTTPS),
the user may believe that the Internet traffic is protected
from end-to-end such that the content shown at the device
and the user’s inputs at the device will be only known to her-
self and the service provider. However, as we will show, our
WindTalker framework presents an effective keystroke
inference method targeting at the mobile device.

2.2 In-Band Keystroke Inference Model

Different with existing works [2], [11], [12], WindTalker
chooses In-band Keystroke Inference (IKI) model. As shown in
Fig. 1a, WindTalker deploys one Commercial Off-The-Shelf
(COTS) WiFi device close to the target device, which could
be a WiFi hotspot. The WiFi hotspot provides free WiFi net-
works for nearby users. When a user connects her device to
the hotspot, the WiFi hotspot is able to monitor the applica-
tion context by checking the pattern of the transmitted WiFi
traffic. In addition, the WiFi hotspot periodically sends
ICMP packets to obtain the CSI information from the target
device. With the meta data of the WiFi traffic collected by
hotspot, WindTalker knows when the sensitive operations
(such as typing password) happen. And then, the hotspot
adaptively launches CSI-based keystroke inference method
to recognize sensitive key inputs. To the best of our knowl-
edge, the IKI method we propose is the first one using exist-
ing network protocols of IEEE 802.11n/ac standard to obtain
the application context and the CSI information at mobile
devices.

Note that the existing works about CSI based gesture
recognition choose another strategy: Out-of-band Keystroke
Inference (OKI) model [2]. In this model, the adversary
deploys two COTS WiFi devices close to the target device
and makes sure the target device is placed right between
two COTS WiFi devices. One is the sender device continu-
ously emitting signals and the other one is the receiver
device continuously receiving the signals. The keystrokes
are inferred from the multi-path distortions in signals.

Compared with OKI model, the proposed IKI model has
the following advantages. First, IKI model does not require
the placement of both sender and receiver device and can be
deployed in a more flexible and stealthy way. Second, in
OKI model, the user device is not connected with attacker’s
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device, so that the attacker cannot obtain the WiFi traffic
from the user’s device. Therefore, OKI model fails to differ-
entiate the non-sensitive operations on mobile devices (e.g.,
clicking the screen to open an APP or just for web-browsing)
from sensitive operation (e.g., inputting the password).
Instead, IKI model allows the attacker to obtain both of un-
encrypted meta data traffic as well as the CSI data to launch
a more fine-grained attack.

2.3 Channel State Information

The basic goal of WindTalker is measuring the impact of
hand and fingers” movement on WiFi signals and leverag-
ing correlation of CSI and the unique hand motion to recog-
nize PIN. In the below, we briefly introduce the CSI related
backgrounds.

WiFi Standards like IEEE 802.11n/ac all support
Multiple-Input Multiple-Output (MIMO) and Orthogonal
Frequency Division Multiplexing (OFDM), which are expe-
cted to significantly improve the channel capacity of the
wireless system. In a system with transmitter antenna
number Nry, receiver antenna number Nrx and OFDM sub-
carriers number Ny, system will use Nrx x Ngx x N, subcar-
riers to transmit signal at the same time.

CSI measures Channel Frequency Response (CFR) in dif-
ferent subcarriers f. CFR H(f,t) represents the state of wire-
less channel in a signal transmission process. Let X(f,¢) and
Y'(f,t) represent the transmitted and received signal with
different subcarrier frequency. H(f,t) can be calculated in
receiver using a known transmitted signal via

Y(fit) = H(f,t) x X(f,1). 1

Since the received signal reflects the constructive and
destructive interference of several multi-path signals scat-
tered from the wall and surrounding objects, the move-
ments of the fingers while password input can generate a
unique pattern in the time-series of CSI values, which can
be used for keystrokes recognition.

Many commercial devices such as Atheros 9,390 [13],
Atheros 9,580 [14] and Intel 5,300 [15] network interface
cards (NICs) with special drivers provide open access to CSI
value. In this study, we adopt Intel 5,300 NICs, which follows
IEEE 802.11n standard [16] and can work in 2.4 GHz or
5 GHz. By selecting a group of 30 OFDM subcarriers of
totally 56 subcarriers, Intel 5,300 NICs collect CSI value for
each TX-RX antenna pair.

3 MOTIVATION

In this section, we illustrate the rationale behind CSI based
keystroke inference on smart phones using real-world
experiments. Fig. 2a shows the sketch of typical touching
screen during the PIN entry for mobile payment (e.g., Alipay
or Wechat pay). We particularly focus on the vertical touch
and the oblique touch, which are two most common touch-
ing gestures [17], [18], [19]. As shown in Figs. 2b and 2c, obli-
que touch is the most common typing gesture which
happens when people press different keys, and vertical
touch usually happens when the human continuously
presses the same key. Fig. 2d shows the original CSI wave-
forms from the 21st subcarrier to 30th subcarrier during once
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keystroke. It can be seen that CSI waveforms collected by
Intel 5,300 NIC are affected by the keystroke and the fluctua-
tions of these ten waveforms are similar. Fig. 2e shows the
processed CSI value for the keystroke (the process method is
mentioned in Section 4). We find that the pattern of proc-
essed CSI value is very closely related to oblique and vertical
touch, and this pattern could be used to characterize the cor-
responding keystroke.

We further investigate how these two common typing
gestures influence CSI. Generally speaking, since CSI reflects
the constructive and destructive interference of several
multi-path signals, the change of multi-path propagation
during the PIN entry can generate a unique pattern in the
time-series of CSI values, which can be used for keystrokes
inference. From our experiments, we found that two main
factors contributing to CSI changes are hand coverage and
the finger click.

Hand coverage and finger position on a smart phone
touchscreen are one of the major factors that cause the fluctu-
ation of CSI waveform. Since time series of CSI waveform
reflects the interference of several multi-path signals, differ-
ent finger position and coverage will inevitably introduce the
interference to the WiFi signals and thus lead to the changes
of the CSI. We further demonstrate the relationship between
CSI variation and finger position/coverage via a series of
experiments. Fig. 3a shows a CSI waveform when continu-
ously pressing different number from 1 to 9, followed by 0,
each for 5 times. It can be seen that the different coverage
leads to the different fluctuation range of the CSI value,
which can be exploited for key inference.

Finger click is another important factor that contributes to
the fluctuation of CSI. Compared with CSI change caused by

the hand coverage, the ex$eriment shows that finger click
rom IEEE Xplore. Restrictions apply.
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has a more direct influence on CSI by introducing a sharp
convex in Fig. 3b, which corresponds to the quick click’s
influence on multi-path propagation. This feature can be
used to distinguish the oblique touches in the case that the
human continuously presses the same key or the adjacent
keys, which produce similar CSI values.
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Fig. 4. WindTalker framework.

4 THE DESIGN OF WINDTALKER

4.1 System Overview

The basic strategy of WindTalker is hitting two birds
with one stone. On one hand, it analyzes the WiFi traffic
to identify the sensitive attack windows (e.g., PIN num-
ber) on smartphones. On the other hand, as long as an
attack window is identified, WindTalker starts to launch
the CSI based keystroke recognition. As shown in Fig. 4,
WindTalker is consisted of the following modules: Sensi-
tive Input Window Recognition Module, which is responsi-
ble for distinguishing the sensitive input time windows,
ICMP Based CSI Acquirement Module, which collects the
user’s CSI data during his access to WiFi hotspot, Data
Preprocessing Module, which preprocesses the CSI data to
remove the noises and reduce the dimension, Keystroke
Extraction Module, which enables WindTalker to automat-
ically determine the start and the end point of keystroke
waveform, and Keystroke Inference Module, which com-
pares the different keystroke waveforms and determines
the corresponding keystroke.

TABLE 1
Payment Applications and Their Sensitive IP Addresses

IP address

Payment application

Alipay 110.76.15.1xx & 110.75.236.xx
Wechat Pay 182.254.78.1xx
JD Pay 111.13.142.x

4.2 Sensitive Input Window Recognition Module

To distinguish the time window of the sensitive input from
that of the insensitive input, WindTalker captures all pack-
ets of the victim with Wireshark and records the timestamp
of each CSI data. Currently, most of the important applica-
tions are secured via HTTPS, which provides end-to-end
encryption and prevents the eavesdropper from obtaining
the sensitive data such as the password. Our insight is that
though HTTPS provides end-to-end encryption, it cannot
protect the meta data of the traffic such as the IP address of
the destination sever, which can be used to recognize sensi-
tive input window.

In particular, WindTalker builds a Sensitive IP Pool for the
interested applications or services. Take the AliPay as an
example. During the payment process, the data packets will
be directed to a limited number of IP addresses, which can
be obtained via a series of trials. In the experimental evalua-
tion, it is shown that, for Alipay users, the traffics of the users
under the same network will be directed to the same server
IP, which will last for a period (e.g., several days for one
round of experiment). Therefore, it is feasible to try to access
the interested applications or services at regular intervals
and append the obtained IP addresses to the Sensitive IP
Pool. This constantly updated pool allows WindTalker to
figure out the sensitive input time window.

To evaluate this method, we conduct experiments on
three popular mobile payment applications (i.e., Alipay,
Wechat Pay and JD Pay) and capture the network traffic
using WireShark. We completed mobile payment for each
application ten times. As shown in Table 1, for a certain
application, when the password input process starts, some
packets with a specific IP address will happen. This result
demonstrates the effectiveness of the sensitive IP pool based
method. Therefore, during the attack process, as long as the
traffic to the IP addresses contained in the Sensitive IP Pool is
observed, WindTalker will extract these traffic, and then
record the corresponding start time and the end time, which
serve as the start and the end of the Sensitive Input Window.
Then, it starts to analyze the CSI data in this period to launch
the password inference attack via WiFi signals.

4.3 ICMP Based CSI Acquirement Module
4.3.1  Collecting CSI Data by Enforcing ICMP Reply

Different from the previous works which rely on two devices
including both of the sender and the receiver to collect CSI
data, we apply an approach that leverages Internet Control
Message Protocol ICMP) in hotspot to collect CSI data dur-
ing the user accesses to the pre-installed access point. In par-
ticular, WindTalker periodically sends a ICMP Echo Request
to the victim smartphone, which will reply an Echo Reply for
each request. To acquire enough CSI information of the vic-
tim, WindTalker needs to send ICMP Echo Request at a high
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frequency, which enforces the victim to replay at the same
frequency. In practice, WindTalker can work well for several
smartphones such as Xiaomi, Redmi and Samsung at the rate
of 800 packets per second. It is important to point out that
this approach does not require any permission of the target
smartphone and is difficult to be detected by the victim.

ICMP based CSI collection approach introduces a limited
number of extra traffics. For a 98 bytes ICMP packet, when
we are sending 800 ICMP packets per second to the victim, it
needs only 78.4 KB/s for the attack where 802.11n can theo-
retically support the transmission speed up to 140 Mbits per
second. It is clear that the proposed attack makes little inter-
ference to the WiFi experience of the victim.

4.3.2 Reducing Noise via Directional Antenna

CSI will be influenced by both finger movement and people’s
body movement. One of the major challenges of obtaining
the exact CSI data in public space is how to minimize the
interference caused by the nearby human beings. We present
a noise reduction approach by adopting the directional
antenna. Different from omnidirectional antennas that have
a uniform gain in each direction, directional antennas have a
different antenna gain in each direction. As a result the signal
level at a receiver can be increased or decreased simply by
rotating the orientation of the directional antenna. Wind-
Talker employs directional antenna to focus the energy
toward the target of interest, which is expected to minimize
the effects of the nearby human body movement.

WindTalker employs a TDJ-2400BKC antenna working in
2.4 GHz to collect CSI data of the targeted victim, whose
Horizontal Plane -3dB Power Beamwidth and Vertical Plane
-3dB Power Beamwidth are 30° and 25° respectively.

Fig. 5 shows the comparison of CSI collection with direc-
tional antenna and without directional antenna in public
place. Figs. 5b, 5¢, and 5d show CSI amplitude in the case that
a victim is located at 75, 125, 150 cm accordingly away from
directional antenna while one human moving nearby. Unique
pattern caused by finger click in number 1 can be easily caught

from the 0r1<t?1nal CSI waveform without any preprocessing.
Authorized
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However, these patterns are submerged in human body’s
influence on CSI waveform obtained by omni-directional
antenna even when the victim and attacker is close as 75 cm,
which is shown in Fig. 5a. In the following sections, we only
discuss the CSIacquirement with directional antenna.

4.4 Data Preprocessing Module

Before launching keystroke inference module, WindTalker
needs to preprocess the CSI data to remove the noises intro-
duced by commodity WiFi NICs due to the frequent changes
in internal CSI reference levels, transmission power levels,
and transmission rates. To achieve this, WindTalker first
turns to wavelet denoising to remove noises from the
obtained signals. Then, WindTalker leverages the Principal
Component Analysis to reduce the dimensionality of the fea-
ture vectors to enable better analysis of the data.

4.4.1  Wavelet Denoising

We observe that the variation of CSI waveforms caused by
finger motion normally appears at the low end of the spectro-
gram while the frequency of the noise occupies at the high
end of the spectrogram. We do not adopt the low-pass filter
since high-frequency signal includes some finger motion
characters. In this paper, wavelet denoising method is used
to remove noise from the raw signal. Different from the tradi-
tional frequency analysis such as Fourier Transform, Dis-
crete Wavelet Transform (DWT) is the time-frequency
analysis which has a good resolution at both of the time and
frequency domains. WindTalker can thus leverage DWT to
analyze the finger movement in varied frequency domains.
Wavelet denoising includes three main steps as follows:

Discrete Wavelet Transform. Generally speaking, a discrete
signal z[n] can be expressed in terms of the wavelet function
by the following equation:

ﬂﬂi%ZWWMMMM

\/—ZZWW jvk]w]k[ nl.

J=Jo

2)

Where z[n] represents the original discrete signal and L rep-
resents the length of z[n]. ¢, ,[n] and ¥, ;[n] refer to wavelet
basis. Wy[jo, k| and Wy [j, k] refer to the wavelet coefficients.
The functions ¢, ,[n] refer to scaling functions and the cor-

responding coefficients W,[jo, k] refer to the approximation
coefficients. Similarly, functions ;,[n] refer to wavelet
functions and coefficients W, [j, k] refer to detail coefficients.
To obtain the wavelet coefficients, the wavelet basis ¢; ;[n]
and v, ;[n] are chosen to be orthogonal to each other.

During the decomposition process, the origin signal is
first divided into the approximation coefficients and detail
coefficients. Then the approximation coefficients are itera-
tively divided into the approximation and detail coefficients
of next level. The approximation and the detail coefficients
in jth level can be calculated as follows:

W¢[~]07k} = < [ } ¢j0+1]< > \/‘Z ¢]U+1 k[n (3)

Wiylj, K = (zln] WM>:%Z[MMH )
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Threshold Selection. After recursive DWT decomposition,
the raw signal is broken into detail coefficients (high-
frequency) and approximation coefficients (low-frequency)
at different frequency levels. Then, the threshold is applied
to the detail coefficients to remove their noisy part. The
threshold selection is important because a small threshold
will remain the noisy components while a large threshold
will lose the major information of signals. In this paper, the
minimax threshold is chosen based on it's dynamic, effec-
tiveness and simplicity [20].

Wawvelet Reconstruction. After the above two steps, we
reconstruct the signal to achieve noise removal by combining
the coefficients of the last approximation level with all details
which have applied threshold. Wavelet selection plays a key
role in wavelet decomposition and reconstruction. There are
many wavelet bases such as Daubechies and Haar wavelet
[20]. In practice, we choose Daubechies D4 wavelet and per-
form 5-level DWT decomposition in wavelet denoising in
our study.

4.4.2 Dimension Reduction

Dimension reduction is essential for keystroke inference via
CSI information. For a CSI recording system using Intel
5,300 NICs with Ny transmitter antennas and Ny receiver
antennas, it can collect Nyxy x Nrx x 30 CSI waveforms. It is
important to reduce the dimensionality of the CSI informa-
tion obtained from 30 subcarriers in each TX-RX pair and
recognize those subcarriers which show the strongest corre-
lation with the hand and fingers movements. WindTalker
adopts PCA to choose the most representative or principal
components from all CSI time series. PCA is also expected
to remove the uncorrelated noisy components. The proce-
dure of dimension reduction of CSI time series based on
PCA includes the following steps.

Subcarrier Selection. We observe that the CSI waveforms
from different subcarriers have different sensitivities to CSI
variation caused by keystrokes due to frequency diversity.
As shown in Figs. 6a, 6b and 6c, some subcarriers ampli-
tudes vary a lot with keystrokes, but others are obtuse. As
shown in Fig. 6d, we calculate the variance of each subcar-
rier. We find that subcarriers 10 to 19 have lower variances,
which means they have lower sensitivities with keystrokes.
So we discard the lowest ten subcarriers before PCA.

Sample Centralization. We use a matrix H to present origi-
nal CSI waveform data. For example, in a system with one
pair of TX-RX antenna, we will get 30 CSI waveforms from
30 subcarriers. Thus, with sampling rate S and time 7', H has

10 20
Subcarrier Index

2402000 4000 6000 8000 30

CSI| Sample Index

(c) 16th Subcarrier: Not Sen- (d) Variance of each Subcarrier
sitive

dimension of M x 30, where M = S x T. Then we calculate
the mean value of each column in A and subtract the corre-
sponding mean values in every column. After the centraliza-
tion step, we get a processed matrix H,,.

Calculating Covariance Matrix. Calculating the correlation
matrix of H, as HPT x H,.

Handling Covariance. Calculating the Eigenvalues and
Eigenvectors of Covariance. The Eigenvectors are normal-
ized to unit vectors.

Choosing Main Eigenvalues. Sorting the Eigenvalues from
large to small and choosing the maximum A number of
Eigenvalues. Then the corresponding k Eigenvectors are
used as the column vectors to form a Eigenvector matrix. We
will get a Eigenvector matrix whose dimension is 30 x k.

Data Reconstruction. Projecting H, onto the selected k
Eigenvector matrix. The reconstruction CSI data stream H,
has the dimension of M x k.

H,(M x k)=

H,(M % 30) x Eigen Vectors(30 x k). (5)

With PCA, we can identify the most representative com-
ponents influenced by the victim’s hand and fingers” move-
ment and remove the noisy components at the same time.
In our experiment, it is observed the first £ = 4 components
almost show the most significant changes in CSI waveforms
and the rest components are noises. In our experiment part,
we observed that the first PCA component reserves most
changes in CSI while the ambient noise is weak. Thus we
only take one PCA component from the first 4 components
in the password inference module.

4.5 Keystroke Inference Module
4.5.1 Keystroke Extraction

By processing the wavelet denoising and dimension reduc-
tion, it is observed that the CSI data shows a strong correla-
tion with the keystrokes, as shown in Fig. 7a. In the
experiment, the sharp rise and fall of the CSI waveform sig-
nals are observed in coincidence with the start and end of fin-
ger touch. How to determine the start and the end point of
CSI time series during a keystroke is essential for keystroke
recognition. However, the existing burst detection schemes
such as Mann-Kendall test, moving average method and
cumulative anomalies [21] do not work well in our situation
since the CSI waveform has many change-points during
the password input period. Therefore, we propose a novel
detection algorithm to automatically detect the start and end
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Fig. 7. Keystroke extraction.

point. The proposed algorithm includes the following three
steps.

Waveform Profile Building. As shown in Fig. 7a, it is
observed that there is a sharp rise and fall which correspond
to the finger motions. However, there is a strong noise which
prevents us from extracting interested CSI waveform related
to the keystrokes. This motives us to perform another round
of noise filtering. In the experiment, we still adopt wavelet
denoising to make the waveform smooth. After being filtered,
the CSI data during the keystroke period are highlighted
while the waveform during non-keystroke period becomes
smooth, which are shown in Fig. 7b.

CSI Time Series Segmentation and Feature Segment Selection.
To extract the CSI waveforms for individual keystrokes, we
slice the CSI time series into multiple segments, which be
grouped together according to the temporal proximity, and
then choose the center of segment as the feature waveform
for a specific keystroke. Without loss of the generality, it is
assumed that each segment contains W samples. Given the
sampling frequency S, and the time duration 7, W can be
represented by S x 7. For the waveform with time duration
of T', the number of segments N can be calculated as below

(6)

N:[TXS}.

w

It is observed that the CSI segments during the key-
stroke period show a much larger variance than those hap-
pening out of the period, which is shown in Fig. 7d.
Motivated by this, we are only interested in the segments
with the variance which is larger than a predetermined
threshold while removing the segments with the variance
under this threshold. The selected segments are grouped
into various groups according to the temporal proximity
(e.g., five adjacent segments grouped into one group in the
practice). Each group represents the CSI waveform of an
individual keystroke and the center point of this group is
selected as the feature segment of this keystroke. The pro-
cess of time series segmentation and feature segment selec-
tion is shown in Fig. 7d.

(e) The Results of Extraction (f) Keystroke Area

Keystroke Waveforms Extraction. To extract keystroke
waveforms, the key issue is how to determine the start and
the end point of CSI time series, which could cover as much
keystroke waveform as possible while minimizing the cov-
erage of the non-keystroke portion.

We calculate the average value of the segment samples .J,
and then choose two key metrics K and L. K is the average
value of J and samples’” maximum value, while L is the
average value of J and samples’ minimum value. The inter-
section of K, L and the CSI waveform serves as the anchor
points. On line K, starting from the leftmost anchor point, it
performs a local search and chooses the nearest local extre-
mum which is below K as the first start point. Similarly,
beyond the rightmost anchor point, it can choose the nearest
local extremum which is below K as the first end point.
Also, we can perform local searches from two anchor points
on line L in order to choose two local extremum beyond L
as the second start point and the second end point. Finally,
we compare these points respectively. As shown in Figs. 7c,
7f, and 7e, with the lower start point and the higher end
point, keystroke waveform can be extracted.

Thus, we can divide a CSI waveform into several keystroke
waveform. The ith keystroke waveform K; from the kth
principal component H,(:, k) of CSI waveforms as follows.

Ki = Hr(si : 6¢,k), (7)
where s; and e; are the start and the end time of ith key-
stroke. After keystroke extraction, we use these keystroke
waveform to conduct recognition process.

4.5.2 Keystroke Time Domain Feature Extraction

One of the major challenges for differentiating keystrokes is
how to choose the appropriate features that can uniquely
represent the keystrokes. As shown in Fig. 8, it is observed
that different keystrokes will lead to different waveforms,
which motivates us to choose waveform shape as a feature
for keystroke classification. However, directly using the key-
stroke waveforms as the classification features leads to a
high computational cost in the classification process since
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Fig. 8. CSl difference between two number.

waveforms contain many data points for each keystroke.
Therefore, we leverage Discrete Wavelet Transform to com-
press the length of CSI waveform by extracting the approxi-
mate sequence. In the below, we will introduce the details.

Wavelet Compression. As mentioned in Section 4.4.1, a dis-
crete keystroke waveform K;[n] can be expressed by the fol-
lowing equation:

1 .
Kiln] =722 Wolio H il .
1 & )
T2 2 Wl Ml

J=Jo

where L represents the length of K;[n|, Wy[jo, k] and W[, k|
refer to the approximation and detail coefficients respec-
tively. In the first DWT decomposition step, the length of
approximation coefficients is half of L. For the jth decompo-
sition step, the length is half of the previous decomposition
step. We use the approximation coefficients to compress the
original keystroke waveforms to reduce computational cost.
In order to achieve the trade-off between the sequence length
reduction and preserving the waveform information, we
choose Daubechies D4 wavelet and perform 3-level DWT
decomposition in the classification model. Therefore, for ith
keystroke, the third level approximation coefficient F; of K
is chosen as the feature of the keystroke. After compression,
the length of feature F; is about 1/8 of K;[n].

4.5.3 Keystroke Frequency Domain Feature Extraction

Besides CSI waveform shape, the CSI frequency feature can
also be used to differentiate keystrokes. The CSI spectro-
grams in frequency domain is a stable property of CSI
streams and is highly correlated to keystrokes. Fig. 9 illus-
trates the CSI spectrograms corresponding to the CSI wave-
forms shown in Fig. 8. It is observed that different keystrokes
have significantly different CSI spectrograms. Therefore, it’s
feasible to use CSI spectrogram information as the feature to
recognize keystroke.

In this paper, WindTalker first performs Short Time Four-
ier Transform (STFT) to obtain the two-dimensional fre-
quency spectrograms of CSI. Then, WindTalker calculates the
contours of the spectrograms to extract features. To extract
the contour, WindTalker first resizes the CSI spectrograms
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Fig. 9. CSl difference between two number: Frequency domain.

with frequency from 0 to 30 Hz into a m-by-n matrix
Mes; (i, h) and normalize the Mcg; (4, h) to a range between 0
and 1. Note that, in M¢g;(i, k), each column represents the
normalized frequency shifts during the ith time slide. Then,
WindTalker chooses a pre-defined threshold and get the con-
tour Cegr (i), wherei = 1...n. Cegr(i) is the maximum value
j which satisfies that Mg (i, j) > threshold. As shown in
Fig. 9, the contours are marked by the black lines. It is
observed that, between the same keystrokes, the contours of
CSI spectrograms have the similar variation trends. Thus we
can regard the contours as the frequency domain features of
the classification and calculate the similarity between the con-
tours for keystroke recognition.

4.5.4 Keystroke Recognition

WindTalker builds a classifier to recognize the keystrokes
based on both the time domain feature and the frequency
domain feature. To compare the features of different key-
strokes, WindTalker adopts the Dynamic Time Warping
(DTW) to measure the similarity between two keystrokes.

Dynamic Time Warping. DTW utilizes dynamic program-
ming to calculate the distance between two sequences with
different lengths. With DTW, the sequences (e.g., time series
and spectrogram contours) are warped non-linearly in the
time dimension to measure their similarity. The input of
DTW algorithm is two sequences and the output is the dis-
tance between them. A low distance indicates that these two
sequences are highly similar.

By adopting DTW, the classifier gives each keystroke a set
of scores, which allows the keystrokes to be differentiated
based on the user’s training dataset (keystrokes on different
numbers). For a certain keystroke K, classifier first calculates
the DTW distances between the features of K; and all of the
keystroke number’s features in dataset in time and frequency
domain respectively. Thus, for K;, we will get two scores
arrays St = {su, 52, ..., 510}, Sr = {Sf1, 572, - .., Sp10}, where
Sr, Sp represent the scores in time and frequency domain
respectively, and sy, refers to the shortest distance between
the input keystroke and the certain key number n in time
domain. sy, is similar but in frequency domain. Finally the
classifier calculates the score S = {s, s9, ..., s10}, where s,, =
S % 8. The lower the score s, is, the higher possibility the
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certain number 7 is actual input number. The classifier choo-
ses the key number which has the minimum score (the value
n which satisfies s,, is the lowest one) as the predicted key
number. Note that the classifier saves all scores of the certain
keystroke K; in order to generate password candidates in
Section 5.3.

5 KEYSTROKE INFERENCE EVALUATIONS

5.1 System Setup

WindTalker is built with the off-the-shelf hardware, which is
actually a commercial laptop computer equipped with Intel
5300 NIC with one external directional antenna. WindTalker
also serves as the WiFi hotspot to attract the users to access to
the WiFi. The laptop runs Ubuntu 14.04 LTS with a modified
Intel driver to collect CSI data. To collect the CSI data related
to the user’s touch screen clicks, WindTalker uses ICMP echo
and reply to achieve the sampling rate of 800 packets/s. In
this evaluation, the distance between the mobile user and the
AP is 75 cm and the AP is placed on the left side of mobile
phone.

In the experiments, we recruit 20 volunteers to join our
evaluation, including 17 males and 3 females. All of the volun-
teers are right-handed and they perform the touch-screen
operations by following their own fashions. During the exper-
iment, the volunteers should participate in the data training
phase and keystroke recognition phase by inputting the num-
bers according to the system hints. In the data training phase,
WindTalker records each input and its corresponding CSI
data. In the test phase, Wind Talker infers the input data based
on the observed CSI time series. The training data and testing
data collection should be finished within 30 minutes since
CSI may change with the change of environment.

We start the evaluation by testing the classification accu-
racy and the 6-digit password inference accuracy. Then we

TABLE 2
Recovery Rate and Training Loop Times
Loop Times One Three Five Nine
Recovery Rate 79.5% 86.2% 88.5% 93.5%

perform a more specific case study by inferring the pass-
word of mobile payment for Alipay in Section 6. Afterwards
we investigate various metrics that may influence the infer-
ence accuracy of WindTalker including the distance, the
direction and the human movement in Section 7. In the cur-
rent stage evaluation, we only perform user-specific train-
ing and will discuss its limitation in Section 9.

5.2 Classification Accuracy

In Section 3, we have shown that different keystrokes may be
correlated with different CSI waveforms. In this section, we
aim to explore whether the differences of keystroke wave-
forms are large enough to be used for recognizing different
PIN numbers inputs in the real-world setting. We collected
training and testing data from 20 volunteers. Each volunteer
first generates 50 loop samples, where a loop is defined as the
CSI waveform of keystroke number from 0 to 9 by pressing
the corresponding digit. After that, we evaluate the classifica-
tion accuracy of WindTalker through the collected CSI data.

The classification accuracy is evaluated in terms of 10-fold
cross validation accuracy. However, in real world scenario,
it is not reasonable to collect 50 training samples for one spe-
cific PIN number. Therefore, we first divide these 50 loops
data into 5 groups evenly. Then, for every 10 loops CSI data,
we pick up one loop in turn for the testing data and choose
the other 9 loops as the training data. WindTalker adopts the
classifier introduced in Section 4.5 to recognize the key-
stroke. We perform the evaluation on Xiaomi, Redmi and
Samsung Note3 smartphone. All of them run with Android
5.0.2. Fig. 10a shows the average classification accuracy of
all 20 volunteers in 10 PIN number. It is observed that
WindTalker achieves the average accuracy classification of
93.5 percent using combined CSI features. However, if
WindTalker only utilizes time-domain feature as [1], the
accuracy will drop to 87.3 percent.

Fig. 10b describes the color map of confusion matrix of
keystroke inference. For a specific typed number, it gives the
corresponding inference results. The darker the area is, the
higher the possibility of keystroke inference result is. Intui-
tively, it is easier for an input number that is confused with
the neighboring numbers during the keystroke inference
process. We further analyze the impact of the number of
training data on recovery rate in WindTalker. Table 2 shows
the keystroke inference accuracy increases with the training
loop increases. Even if there is only one training sample for
one keystroke, WindTalker can still achieve whole recovery
rate of 79.5 percent.

5.3 Password Inference

In a practical scenario setting, it may not be easy for Wind-
Talker to get 9 training samples for each PIN number. So in
the remaining section, we only use 3 samples per PIN num-
ber for training. To illustrate the performance of WindTalker
for password Inference, in this part, we ask volunteers to
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TABLE 3
Recovery Rate and the Number of Candidates
Number of candidates One Two Three
Recovery rate 86.2% 93.4% 96.2%

press 10 randomly generated 6-digit passwords on Xiaomi
smartphone and use their corresponding 3 loops as training
dataset.

We test totally 500 set of passwords, which include 3,000
keys. As shown in Table 3, with 3 loops as training data,
WindTalker can achieve an average 1-digit recovery rate of
86.2 percent. For a 6-digit password in AliPay, the attacker
can try several times to recover the password at an increased
successful rate. Thus, we introduce a new metric, recovery
rate with Top N candidates, which indicates the rate of suc-
cessfully recovering the password for trying N times and
represents a more reasonable metric to describe the capabil-
ity of the attacker in the practical setting. As shown in Table 3,
if we evaluate the 1-digit recovery rate under top 2 and
top 3 candidates, the recovery rate can be significantly
improved.

We further study how many candidates can help us to
succeed in predicting the right 6-digit payment password
in WindTalker. In particular, we will investigate the infer-
ence accuracy under top N candidates. In the experiment,
each 6-digit password will be correlated with six key-
strokes K = {K,K,,...,Ks}. For each keystroke K;,
WindTalker calculates its corresponding score S; = {s;1,
Si2,..- 8101 Then, for a given password candidate PIN
number P = {p;,ps,..., ps}, where p; € [0,9], WindTalker
calculates the likelihood L between K and P. L is
defined by L =TI’ si,. Given a 6-digit password K,
for each keystroke K;, we can obtain 5 candidates with
lowest s; and then generate 5° = 15626 candidate pass-
words. Then WindTalker sorts these passwords by their
likelihoods in ascending order. A successful password
inference is defined as that the real password is included
in top N candidates. In Fig. 11a, we give the password
inference accuracy under top N candidates, where N
ranges from 1 to 20. The result is encouraging. It is shown
that, given top 1 candidate, the inference accuracy is
41.2 percent. And the inference rate can be significantly
improved if given top 5 candidates or top 10 candidates,
which correspond to 69.6 and 77.4 percent, respectively. It
is also shown in Fig. 11b that, if given enough top N candi-
dates (e.g., set N as 60), the inference accuracy can reach
above 85 percent.

6 REAL-WORLD EXPERIMENT: MOBILE PAYMENT
PASSWORD INFERENCE TOWARDS ALIPAY

6.1 System Setup

To demonstrate the practicality of the WindTalker, we per-
form an experimental evaluation of password inference on
Alipay, a popular mobile payment platform on Both of
Android and iOS system. Alipay is the largest mobile pay-
ment company in the world and has 450 million monthly
active user including 270 million mobile payment users [22].
As shown in Fig. 12, we deploy a WindTalker system at a
cafe-like environment and release an authentication-free
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Fig. 12. Real case scenario.

WiFi. The AP (including Intel 5,300 NIC and the antennas) is
set up behind the counter, which makes it less likely to be
detected visually. The victim is 1 meter away from our
deployed WiFi devices. When we collect the data, one volun-
teer walks pass by the victim but none of volunteers walks
between the victim and the AP.

To simulate the real-world attack scenarios, the recruited
volunteers are required to access to this free WiFi access
point and perform the following three phases: 1) Online
Training Phase: the volunteers are required to input some
randomly generated numbers by following a similar way as
Text Captcha. This phase is designed to collect the user’s
input number and the corresponding CSI data to finish the
data training. 2) Normal Use Phase: the volunteers perform
the online browsing or use the applications as a normal user.
3) Mobile Payment Phase: when the users use the online
shopping applications, it will be ended with the mobile pay-
ment. All of the online shopping and mobile payments are
secured with HTTPS protocol. According to Alipay mobile
payment policy, the mobile users must input the password
to finish an mobile payment transactions. The goal of the
attacker is to recover the mobile payment password of the
volunteers.

6.2 Operations of WindTalker

After the volunteers connect to the authentication-free WiFi
hotspot, WindTalker triggers ICMP based CSI Acquirement
Module to collect the CSI data at the sampling rate of 800 pack-
ets/s. WindTalker records the timestamp per one hundred
CSI data. Simultaneously, WindTalker utilizes Wireshark to
capture and record WiFi traffic packets and their correspond-
ing timestamps. During the real-world experiment, Wind-
Talker collects WiFi traffic data and CSI data in the online
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Fig. 13. WindTalker in case study.

phase. After collecting the data, WindTalker infers the user’s
mobile payment password in the offline phase.

During collecting ICMP reply packets, WindTalker also
collects additional network traffic packets from users” APPs.
As pointed out in [15] and [23], only some particular types of
packets (e.g., ICMP packets using “HT” rate) will be mea-
sured by Linux 802.11n CSI Tool. In our real-world experi-
ments, CSI values will not be extracted from these packets
generated by user’s APPs. Besides, since CSI is the physical
layer information which reflects the wireless channel envi-
ronment, the CSI measurements are irrelevant to the types of
network traffic packets. Thus even some addtional packets
were measured by Linux 802.11n CSI Tool, they will only
cause the CSI sampling rate vary slightly. Because we can
record the timestamp of each CSI value, thus we can use the
timestamps to reconstruct CSI stream to eliminate the impact
of sampling rate variation. Fig. 13 shows the CSI waveforms
reconstructed according to timestamps.

6.3 Recognizing the Sensitive Input Window

To determine the sensitive input window, WindTalker utilizes
Wireshark to collect the meta data (eg., IP address) of the WiFi
traffic during collecting CSI data. The meta data collected by
Wireshark is shown in Fig. 13a. We can find that in the experi-
ment, Alipay applications route their data to a server of some
fixed IP address such as “110.75.xx.xx”. These IP addresses are
used by the Alipay service provider and do not change for one
to two weeks. With the traffic meta data, as shown in Fig. 13a,
WindTalker obtains the rough start time and end time of the
sensitive input window via searching packets whose destina-
tion is “110.75.xx.xx”. Then, according to the timestamps of CSI
data, WindTalker locks the CSI data during this period of time.

6.4 CSlbased Password Inference

Fig. 13b shows the original the 30th subcarrier CSI data in
Sensitive Input Window. After data preprocessing, Fig. 13c
shows the first three principal components of CSI data after
PCA. It is found that in the real-world experiment that
besides input payment password, victim may have other

operations such as selecting credit card for payment in period
of time of Sensitive Input. In order to handle this situation,
WindTalker only needs to find a continuous keystroke of cer-
tain length. In our case, we are interested in continuous 6-bit
password input since Alipay chooses 6-digit mobile payment
password. Thus after keystroke extraction and recognition
process, WindTalker is able to list possible password candi-
dates according to probability. The top three password candi-
dates in this case is 773,919, 773,619, 773,916 while the actual
password is 773,919. We carry out the real-world experiment
ten times, each time the password is different. Our experi-
ment results show that the attacker can successfully recover
6, 8 and 9 passwords if allowing to try the password input for
5,10 and 50 times (or Top 5, 10 and 50 candidates). This fur-
ther demonstrates the practicality of the proposed attack in
the practical environment.

7 IMPACT OF VARIOUS FACTORS

There are many factors potentially affecting the CSI. The per-
formance of WindTalker is affected by various factors such
as relative position of AP and mobile device, CSI sampling
rate, keyboard layout, human movement and temporal fac-
tors. Even clicking at the same key, the different distance and
direction between AP and the mobile device may also lead to
a different CSI. We will investigate the impact of these factors
on WindTalker in our experiments.

7.1 Distance

In a real scenario, the distance between the victim’s mobile
device and AP is not fixed. As shown in Fig. 14a, the recovery
rate of WindTalker will decrease along with the increase of the
distance. However, it is observed that, even if the distance
between the antenna of WindTalker and victim’s smartphone
(i.e., Xiaomi) is enlarged to 1.5 m, WindTalker can still achieve
keystroke inference accuracy of 83.5 percent in terms of 10-fold
cross validation, which is high enough for launch keystroke
inference. Fig. 14b shows that both of CSI shape and degree
will change under different distance when pressing the same
key. This indicates that WindTalker needs to retrain dataset
even for the same victim with different distances. When the
distance between antenna and victim is too long, the multiple-
path propagate will become more complicated. Thus the col-
lected CSI cannot reflect the victims finger precisely and result
in inaccurate inference results. To partially solve these limita-
tions, there are two possible solutions. First, the attacker can
fix the location of table and chairs, which will make the user’s
position relatively stable. The other solution is placing three
antennas of Intel 5,300 NIC at different locations to enlarge the
effective range of WindTalker. Therefore, when the victim con-
nects to rogue WiFi, WindTalker could dynamically choose
the antenna which is closest to the victim to collect CSI data.

7.2 Direction

The relative direction between the victim and attacker may
seriously affect the CSI since different directions mean differ-
ent multi-path propagation between the transmitter and the
receiver. Thus, we show the performance of WindTalker
under different directions. Note that the mobile device (i.e.,
Xiaomi in this experiment) is in front of victim. It is impor-
tant to point out that, for a right-handed user, WindTalker
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shows a better performance when the AP is on the left side of
the victim. This is because it is easier for WindTalker to sense
victim'’s finger clicks and the hand motion. Fig. 15 shows the
keystroke inference accuracy of WindTalker in different
direction in terms of 10-fold cross validation. It is interesting
that WindTalker can achieve a high performance even the
AP is deployed behind victims (i.e., 81 percent), which
means that the proposed CSI based keystroke inference can
work well even if the attacker is behind the user without
visually seeing the clicking actions. This represents one of
significant merits which cannot be achieved by any previous
work. In real-world, the attacker can adjust the position and
orientation of directional antenna to overcome the limitations
of distance and direction.
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7.3 Smartphone Type

The experiments in Sections 5 and 6 are implemented on
Xiaomi, Redmi and Samsung Note3 smartphone. To evaluate
the impact of different smartphone types, we recruit ten vol-
unteers to generate 10 loop keystrokes on Xiaomi, Redmi
and Samsung Note3. All of these mobile phones run with
Android 5.0.2. When using all nine loops data, WindTalker
achieves the average classification accuracy of 93.5, 88.3 and
83.9 percent on Xiaomi, Redmi and Samsung Note3 respec-
tively. The experimental result indicates that the WindTalker
performance is affected by the smartphone type, because dif-
ferent smartphones may have different relative positions of
antennas and working powers. Fortunately, the accuracy of
WindTalker on different smartphones are still acceptable for
password inference.

7.4 CSl Sampling Rate

The keystroke recognition accuracy depends on the sam-
pling rate of CSI. When the CSI sampling rate is high, there is
more information in the CSI waveform, which increases the
keystroke recognition accuracy. Thus, we are interested in
how the CSI sampling rate influences the performance of
WindTalker. Fig. 16 shows the average classification accu-
racy of all volunteers with Xiaomi smartphone when varying
the sampling rate from 100 packets/s to 800 packets/s. The
experiment procedures are the same with Section 5.2 and
the antenna is placed at the best position as mentioned in
Sections 7.1 and 7.2. From Fig. 16, we observe that the classifi-
cation accuracy improves when the sampling rate is higher,
but the improvement is not significant beyond the sampling
rate of 400 packets/s. For instance, with sampling rate of
400 packets/s, the classification accuracy of Xiaomi is
90.3 percent, which is only a slight drop compared to
93.5 percent achieved for a sampling rate of 800 packets/s.
Because sampling rate of 400 packets /s is still enough to cap-
ture the movement feature of keystroke. When sampling rate
reduces to 100 packets/s, the accuracy of Xiaomi reduces
significantly to 82.8 percent, as this sampling rate loses the
detailed feature of keystroke. In our experiment, we use the
sampling rate of 800 packets/s to achieve the best perfor-
mance of WindTalker. But when facing a high packet loss
rate situation, we can use the a lower sampling rate above
100 packets/s to achieve an acceptable performance.

7.5 Keyboard Layout
There are two different keyboard layouts which influence
the keystroke recognition accuracy. Besides the numeric
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keyboard which is used in most online payment scenarios,
there is QWERTY keyboard on which a user can type letters,
numbers and special characters. The main difference
between the two keyboards is the key space. Comparing to
typing numeric keyboard, the hand movement tends to be
subtle when typing adjacent keys on QWERTY keyboard,
which makes recognizing keystrokes much more difficult
since the CSI waveforms become similar.

We are interested in how the QWERTY keyboard influ-
ences the recognition of keystroke. For simplicity, we just
focus on the digital input on the QWERTY keyboard. We
perform experiment on Xiaomi phone and the keyboard
layout is provided by Google input method. Fig. 17a
shows average classification accuracy on both numeric
and QWERTY keyboard. We observe that the accuracy of
QWERTY keyboard is 67.8 percent, which significantly
drops compared to 93.5 percent of numeric keyboard.
Fig. 17b is the confusion matrix of QWERTY keyboard. We
observe that most error recognition happened between the
adjacent keys. Although the accuracy of QWERTY key-
board is lowered than numeric keyboard, but it still higher
than the random guess.
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Fig. 19. CSI waveforms of PIN number 1 on different days.

7.6 Human Movement

In some cases, the CSI-based sensing may be affected by the
movement of other nearby human. Thus, we evaluate the
impact of human walking and human arm movement on
the performance of WindTalker. As shown in Fig. 18a, while
WindTalker collecting the CSI data to infer the victims key-
stroke, we recruit a volunteer to walk along four different
lines (L1, L2, L3, L4) respectively. The distances between
WindTalkers antenna and the midpoints of L1, L2, L3 and L4
are 1 meter, 2 meters, 3 meters and 4 meters respectively. The
distance between antenna and the victim is 1 meter. We
totally conduct four experiments. In each experiment we ask
the victim to continuously generate keystrokes and collect
the corresponding CSI, at the same time, the volunteer walks
along one of the four lines with the speed of 0.5 m/s. Fig. 18b
shows the experimental result. When the distance between
antenna and the midpoint of walking mans trajectory is
larger than 2 meters, the keystrokes could be easily found
from the collected CSI waveforms. However, when the dis-
tance is 1 meter (i.e., the walking mans trajectory is very close
to the victim), it is hard to extract keystroke waveforms from
collected CSI data. The results show that the humans walk-
ing will bring additional multiple-path effects into the wire-
less transmission. However, WindTalker is still effective if
only there is no human walking within 2 meters of the Wind-
Talkers antenna.

Besides human walking, we also consider another sce-
nario in which a human stays at a fixed location but waves
his/her arms. We conduct four experiments. When the vic-
tim continuously generating keystrokes, we ask the volun-
teer stays at the midpoints (i.e., C1, C2, C3, C4 in Fig. 18a) of
above four lines respectively and spins his/her arm with the
average speed of 0.91 cycle per second. As shown in Fig. 18c,
when the distance between antenna and volunteer is larger
than 3 meters, the keystrokes could be recognized from col-
lected CSI data. When the distance is 1 meter (i.e., the victim
is very close to another people), the keystrokes is hard to be
extracted. Therefore, WindTalker will work normally only if
there is no user waves his/her arms within 3 meters of the
WindTalkers antenna.

7.7 Temporal Factors

The temporal factors will also affect the performance of
WindTalker. Fig. 19 shows how CSI waveform changes on
different days. We can observe that these CSI shape patterns
look different. The reason is that in different days, the users
typing behaviour may be inconsistent and the surrounding
environment may change, which may affect the constructive
and destructive interference of several multi-path signals.
Therefore, in current state, for each keystroke inference,
WindTalker needs to update the users CSI profiles to ensure
its performance. We leave this limitation for future work.
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8 COUNTERMEASURES

8.1 Basic Defense Strategies
8.1.1 Randomizing the Keyboard Layout

One of the most straightforward defense strategies is to ran-
domize the layouts of the PIN keyboard, such that the
attacker cannot recover the typed PIN number even if he can
infer the keystroke positions on the touchscreen. As pointed
out by [7], randomizing the keyboards is effective at the cost
of the user experience since the user needs to find every key
on a random keyboard layout for every key typing.

8.1.2 Changing Typing Gesture

For WindTalker, collecting the accurate CSI data is essential
for achieving high inference success rate. Thus the user can
intentionally change his typing gestures or clicking patterns
to introduce the unexpected interference to the CSI data. For
example, the randomized human behaviors (e.g., human
mobility) would introduce more impact on CSI than finger
click on wireless signals, which reduce the successful chance
of the adversary.

8.1.3 Refusing to Connect to Rogue WiFi

The most thorough defense strategy is refusing to connect to
rogue WiFi hotspot. For instance, [24] and [25] proposed a
method which can detect a rogue WiFi hotspot. These detec-
tion systems suppose that both of the rogue hotspot and
the legitimate hotspot have the same SSID. However, if the
attacker uses a new SSID that is not observed before by the
detection system, it will fail either.

8.1.4 Blocking the ICMP Echo Request

Our CSI based typing inference requires collecting CSI data
with a high frequency. According to [26], the data received
in the echo message must be returned in the echo reply mes-
sage. It means that the victims device must reply to the
attackers WiFi hotspot when it received the ICMP echo
request. A countermeasure for the user is configuring the
firewall to detect and block the high-frequency ICMP echo
requests. But this countermeasure is rarely used in Android
smartphones, because it needs to be implemented at the
operation system level and the common users have no access
to it[27]. As far as we have tested in 3 mainstream un-rooting
smart phones(Xiaomi, Redmi and Samsung), none of them
have blocked this kind of ICMP echo request, because it will
forbid other hosts to ping the user device and affect the user
experience.

8.2 CSI Obfuscation Algorithm

In this section, we propose a novel obfuscation strategy to
defend against the CSI based side channel attacks. Our goal
is preventing the attackers from collecting the accurate CSI
data introduced by users password input. In the ideal case,
the strategy can be implemented and deployed at the users
side and can be triggered in a user-transparent way as long
as any sensitive input time window is observed. This strat-
egy does not need the user’s participation and thus minimize
its impact on the user experience.
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Fig. 20. Obfuscation defense strategy.

8.2.1 Overview of the Basic Idea

The basic idea of the proposed defense strategy is introduc-
ing a randomly generated CSI time series sequence to obfus-
cate the original one. As shown in Fig. 20, during the
sensitive input time window, when the attacker collects the
CSI data (or original CSI data) from the target user, the user
device can randomly generate some CSI data (or obfusca-
tion data) to obfuscate the original CSI data and thwart the
side channel attack. According to 802.11n standard [16],
when the user does not launch sensitive applications, the
attacker can obtain the CSI data by analyzing the training
sequence of the preamble of the WiFi packet obtained from
the victims device. Without loss of the generality, the origi-
nal CSI between victim and attacker is estimated as

Y

H =— 9
X 9)

where X, is the training sequence on transmitter and Y; is
the training sequence on receiver. In practice, both the trans-
mitter and receiver assume that the training sequence X;
will not change during the whole communication process.
During the password input progress for a specific mobile
payment application, (eg. Alipay), the defense strategy will
be launched. The attacker uses the ICMP requests to obtain
WiFi packets from the victim, and, at the same time, the users
device can also proactively sends the obfuscation packets
to the attacker. For instance, the training sequence X; in
Equation. (9) was changed into
=AHX;. (10)
The revised training sequence will be received by
attacker as
Yo = H1 Xy = HHAHX,

= Hy)X;. 11

From the attacks perspective, it is indistinguishable for the
original and obfuscation data. Because the attacker still uti-
lizes original training sequence X to estimate CSI, therefore
the attacker would estimate victims CSI as Hy = H{AH. It
means that the original CSI data will be masked by inserting
forged CSI data H, into the original CSI sequence H;. Thus
the CSI based side channel attack can be thwarted because
the attacker cannot infer the users keystroke by analyzing
CSI data.
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8.2.2 Experiment Evaluations

We perform an experiment to prove the effectiveness of our
proposed strategy. In the ideal case, it should be the users
device that generates the obfuscation data. In our experi-
ments, we adopt a mobile phone as the target device and
another phone as the obfuscation device to perform the
proof-of-concept experiments and evaluate the effectiveness
of the proposed defending strategy. In practice, to imple-
ment this defense strategy in users devices, we can use Soft-
ware Defined Radios (SDR) to revise the training sequence of
mobile device [28].

In our experiment, both devices are connected to a WiFi
hotspot released by WindTalker. The WindTalker uses ICMP
based CSI Acquirement Model to obtain CSI data H; from the
victim, and during this period, the victim continuously types
PIN numbers. When victim launches sensitive application
(e.g., Alipay), the obfuscation device continuously sends
packets (e.g., UDP packets) to WindTalker so that the Wind-
Talker receives mixed CSI data. Note that, the obfuscation
device is placed at different places to get a different CSI esti-
mated value H,.

The result is shown in Fig. 21. We can find that without the
involvement of obfuscation device, the WindTalker works
normally and the finger clicks are easily distinguished in CSI
H,. With the involvement of obfuscation device, the finger
click patterns are obfuscated with the forged CSI measure-
ments Hy. So the effectiveness of this defense strategy is
demonstrated. The [28], [29] and [30] have discussed how to
implement it in the SDR system. To apply this method to
mobile phone, the operation system kernel of the phone
should be revised [16], which is out of the scope of this work.
We will leave it for the future work.

9 LIMITATIONS

In this section, we discuss the main limitations of Wind-
Talker. WindTalker’s high performance is achieved in an
experiment environment. However, if we try to apply Wind-
Talker in anytime and anyplace, we need to overcome the
limitations as follows.

Hardware Limitations. In WindTalker, we use Intel 5,300
NIC and Linux 802.11n CSI Tool [15]. In our experiments, it
is observed that the system will crash when we perform CSI
data collection for iPhone or some versions of android smart
phones. This is because, according to the statement of the
CSI Tool, it is very easy to crash when one Intel 5,300 NIC

works with other NICs (e.g., an iPhone). However, our
implementation and evaluation on a wide range of smart
phones (including Xiaomi, Redmi and Samsung phones)
demonstrate the practicality of the proposed CSI based key-
stroke inference method. We will leave the issues of improv-
ing the compatibility of Intel 5,300 NIC with a wider range
of mobile devices to our future work.

Fixed Typing Gesture. Currently, WindTalker can only
work for the situation that the victim can only touch the
screen with a relatively fixed gesture and the phone needs to
be placed in a relative stable environment (e.g., a table). In
reality, the user may type in an ad-hoc way (e.g., the victim
may hold and shake the phone, or even perform some other
actions while typing). We argue that is a common problem
for most of the side channel based keystroke inference
schemes such as [2], [8], [10]. This problem can be partially
circumvented by profiling the victim ahead or performing a
targeted attack by applying the relevant movement model as
pointed out by [8].

User-specific Training. WindTalker needs to extract the key-
stroke samples from the victim before launching password
inference attack. This requirement is a common assumption
for most of the side channel keystroke inference attacks such
as [2], [9], [31], [32], [33], [34]. To launch a real-world attack,
the attacker can consider the following two strategies. First,
WindTalker could leverage some social engineering methods
to collect training data from victim. For example, the attacker
could implement online training by mimicking a Text
Captcha to require the victim to input the chosen numbers.
As shown in the Section 5.3, given three training samples per
key, WindTalker could achieve 6-digit password inference
accuracy of 69.6 percent under top 5 password candidates.
The second strategy is using the self-contained structures of
collected CSI data. For example, our follow-up work [35] pro-
poses a non-training CSI based keystroke inference system. In
this system, the attacker extracts the correlations between the
CSI features of keystrokes, and then maps the collected CSI
data to a word within a predefined dictionary. Applying this
idea in our 6-digital password inference scenario maybe a
potential solution, and we leave it for future work.

10 RELATED WORK

10.1 Free Public WiFi with Malicious Behaviors

Free Wi-Fi services provided by public hotspots are attrac-
tive to users in a mobile environment when their mobile
devices have limited Cellular connection. Existing works
[36], [371, [38], [39], [40], [41] have demonstrated it is feasible
to deploy a malicious Wi-Fi hotspot in a public area. For
example, an iPhone can turn itself into a Wi-Fi hotspot. If
the iPhone user changes the session ID to “Starbucks Free
Wi-Fi”, other people may connect their phones to the iPhone
while wrongly believe they are using free WiFi services from
a nearby Starbucks. In such a scenario, the attacker can uti-
lize the WiFi network traffic collected by the WiFi hotspot to
infer the user’s privacy information. Taylor et al. [42] pro-
posed methodology to fingerprint and identify Android
apps by analyzing the encrypted HTTPS/LTS traffic. Alan
et al. [43] proposed a method to identify mobile apps only
using the TCP/IP headers from the apps launch time traffic.
Finally, Conti et al. [44] presented a system that using
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network traffic to identify the specific actions that a user is
performing on his/her mobile apps.

Compared with these previous works, our WinderTalker
utilizes both network layer traffic and physical layer CSI
information to infer the user’s sensitive information. In our
considered scenarios, attacker lures the users to connect their
devices to a fake access point. Then, the attacker eavesdrops
the WiFi traffic to identify the sensitive window and selec-
tively analyzes the CSI information to infer the sensitive
keystroke information.

10.2 Keystroke Inference Methods

Prior keystroke inference methods utilized the information
from various sensors and communication channels, such as
motion, camera, acoustic signals, and WiFi signals.

Motion. Owusu et al. [10] presented an accelerometer-
based keystroke inference method, which aims to recover six-
character passwords on smartphones. Later, Liu et al. [8]
applied a similar idea to the smartwatch scenario. Their objec-
tiveis to track user’s hand movement over the keyboard using
the accelerometer readings from the smartwatch, and the key-
stroke inference achieves 65 percent recognition accuracy.

Acoustic Signals. Zhu et al. [5] presented a context-free and
geometry-based keystroke inference. They leverage the
microphones of a smartphone to record keystrokes” acoustic
emanations and the experimental results show that more
than 72.2 percent of keystrokes can be accurately recovered.
Liu et al. [4] further proposed a keystroke snooping system
by exploiting the audio hardware to distinguish mm-level
position difference. The accuracy of their system can achieve
94 percent. These works could achieve high accuracy on both
digital and QWERTY keyboard. However, compared with
these works, WindTalker requires neither a fixed position
nor a close distance to the victim. Furthermore, WindTalker
can obtain the network traffic information, which improves
the practicality in real-world environments.

Camera Based. Yue et al. [7] introduces a camera-based
keystroke inference using Google Glass or off-the-shelf web-
cam. Shukla et al. [6] also presented a video-based attack
relies on the spatio-temporal dynamics of the hands during
typing. Sun et al. [34] use camera to record tablet backside
motion and infer the victim’s typing content.

WiFi Signal Based. Using WiFi signals to infer the key-
stroke draws a large research attention because it offers
device-free and non-invasion advantages. Ali et al. [2] pro-
posed a keystroke inference systems called WiKey, which
uses the CSI waveform pattern generated by finger’s unique
motion to distinguish keystrokes on a external keyboard.
Zhang et al. [11] presented WiPass, which can work in
mobile device to detect the graphical unlock passwords. Tan
et al. [12] also proposed WiFinger, which leverage CSI from
COTS device to capture the user’s fine-grained finger ges-
ture. Compared with our work, WiKey, WiPass and WiFin-
ger don’t utilize the network traffic information, thus these
schemes work on the OKI keystroke inference model and
they can not recognize the user’s sensitive input window.

11  CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel side-channel attack
model named WindTalker, which can be used to infer a

victim’s mobile password via WiFi signals. WindTalker is a
cross-layer inference system, which utilizes both network
layer traffic information and physical layer CSI information.
Our experiments on Alipay shows that WindTalker can be
effective in recognizing the victim’s password on smart
phones. Compared with previous works, WindTalker nei-
ther deploys external devices close to the target device nor
compromises the target device. Furthermore, we proposed
the CSI obfuscation based countermeasure and performed
the experiment to prove the effectiveness of this counter-
measure method.
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