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Abstract—Voice interface has been a dominant User Interface (UI) channel in the popular smart home environment. Although Voice

Control System (VCS) brings users conveniences, it is extremely vulnerable to spoofing attacks (e.g., hidden/inaudible command

attack) due to its broadcast nature. In this study, to thwart spoofing attacks, we propose WSVA, a device-free voice liveness detection

system based on the prevalent wireless signals generated by IoT devices without requiring user to carry any additional sensor or

device. The basic insight of WSVA to distinguish the authentic voice command from a spoofed one is checking the consistency

between the voice signal and its corresponding mouth motions, which can be captured by wireless signals. To achieve this goal, WSVA

builds a theoretical model to describe the correlations among the wireless signal changes, the mouth motions, and the syllables in the

voice command. Then, WSVA selects appropriate features from both voice and wireless signals, and calculates the consistency

between these two types of signals to determine whether the VCS is suffering from the spoofing attack. To demonstrate the feasibility

of WSVA, we conduct a case study on Samsung SmartThings platform and include WSVA as a new application, which is expected to

significantly enhance the security of the existing VCS. We evaluate WSVA with various voice commands in different scenarios.

Experimental results demonstrate that WSVA achieves the overall 99 percent true accept rate with 1 percent false accept rate with a

good scalability and low latency.

Index Terms—Liveness detection, voice control system, wireless side channels

Ç

1 INTRODUCTION

WITH the rapid growing of Internet of Things (IoT) tech-
nology, smart home or home automation is gaining an

increasing popularity due to its great benefits of allowing the
users to control their domestic appliances (e.g., lights, tem-
perature controller, electronic switch, microwave, refrigera-
tor) via a variety of user interfaces such as image sensing,
wireless communication and voice controller commands.
According to the list of Top 10 Consumer IoT Trends in 2017
published by Parks Associates, voice controller is predicted
to become the primary user interface for the smart home and
intelligent lifestyle [2]. Currently, the typical IoT voice con-
trol systems include Amazon Alexa [3], Samsung Smart-
Things [4], Google Home [5] and other interactive voice
interfaces. According to Grand View Research’s report,
the market share of voice recognition was $9.12 billion in
2017 with an increasing rate of 17.2 percent during the fore-
cast period [6]. Besides, the household penetration of Voice
Control System (VCS) is expected to reach 47 percent in the
USA by 2022 [7].

Although voice controller is regarded as the most prom-
ising user interface in smart home, it also introduces some
emerging security concerns due to the inherent broadcast
nature of voice channel, which makes it extremely vulnera-
ble for spoofing attacks including the replay attacks, the hidden
command attacks and the inaudible command attacks. The
replay attack means that the adversary could fool the VCS
using the pre-recorded voice samples of the legitimate
user [8]. In the hidden command attack, a falsified speech
signal mixed with noise samples is used as the input of
VCS [9]. As an extreme case of spoofing attacks, recent stud-
ies [10], [11] show that it is feasible to inject some hidden or
even inaudible voice commands which cannot be under-
stood/heard by human but can still be interpreted by the
VCS. This kind of spoofing attacks opens a concealed door
for the adversary to query the user’s sensitive information
from VCS, or force the smart devices to perform misbehav-
ing behaviors (e.g., unlocking the door when user leaves
home), which poses a serious security threat to the smart
home systems.

Existing solutions to defend against the spoofing attacks
mainly fall into two categories: voice password based access con-
trol and two-factor based liveness detection. In the password
based access control, the user is required to speak a special
passwordbefore inputting the voice controller commands [12].
However, speaking a password is either inconvenient for
user or vulnerable to eavesdropping attack. On the other
hand, the two-factor based liveness detection exploits the
information (e.g., image/video collected by camera [13], mag-
netic filed emitted from loudspeaker [14], time-difference-
of-arrival changes from different microphones of smartphone
[15], acceleration data of user’s wearable devices [16] and the
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Doppler shift of ultrasonic caused by user’s mouth motion
[17]) that are closely correlated with the operations of VCS as
the user’s liveness features to differentiate between the voice
samples generated by legitimate user and adversary. How-
ever, the existing two-factor based liveness detection schemes
require the user to either carry specialized sensing devices or
perform specific actions to collect the liveness information,
thus their practicalities are limited. More seriously, some of
these schemes pose unacceptable privacy risks, since the
user’s daily behaviors may be leaked from the collected infor-
mation (e.g., image or video data in [13]).

In this study, we present WSVA, a wireless signal based
voice authentication system to thwart the spoofing attacks
aiming at VCS. Unlike prior liveness detection schemes,
WSVA is a device-free system without requiring the user
to carry any additional device or sensor, and it leverages
the prevalent wireless signals generated by Wi-Fi devices
in IoT environment. WSVA is motivated from the following
observations. First, inspired by the widely application of lip-
reading technology, it is feasible to understand the speech
by sensing the movements of the lips, face and tongue. In
other words, voice command can be cross-checked by the
user’s mouth motions. Second, the prior researches show
that the indoor object movement will disturb the multiple-
path of wireless signals and can be reflected onChannel State
Information (CSI) of Wi-Fi signals. Thus a variety of human
activities can be identified by using the CSI based wireless
sensing techniques. Therefore, it is natural to raise the fol-
lowing question: is it feasible to build the correlation between the
user’s mouth motion and the environmental CSI change, and lever-
age this correlation to verify the liveness of voice commands
received by VCS?

The answer for the above questions is not straightfor-
ward. WSVA faces three major challenges: i) The impact of
mouth motion on wireless signals is subtle. Although previ-
ous works utilize sophisticated methods such as MIMO
beamforming or Frequency-Modulated Carrier Waves
(FMCW) [18], [19] to improve the wireless sensing capabil-
ity, they may not be suitable for our problem because the
commercial IoT devices are resource-constrained and can-
not implement these sophisticated wireless techniques. ii)
According to our experimental result, only the jaw and
tongue movements can be recognized by wireless signals
while the vocal vibration which contributes a lot to voice
signal could not be distinguished. Besides, prior works [19],
[20] pointed that not all voice syllables can be recognized by
lip-reading techniques. iii) To correlate the voice and CSI
signals, how to select appropriate features from these two-
dimensional signals still remains a big challenge.

This study shows how WSVA addresses the above chal-
lenges and achieves liveness detection. First, we build a
new model to describe the correlation among the CSI
changes, the mouth motions, and the syllables of the
received voice signals. Then, WSVA proposes a novel signal
processing method to filter the noises of collected voice and
CSI signals, and to extract syllables and mouth motions
within the voice command. Further, WSVA utilizes a novel
method to extract both time-domain and frequency-domain
of two types of signals and performs the liveness detection.
We conduct experiments to evaluate the liveness detection
performance of WSVA and give a case study on Samsung

SmartThings platform to demonstrate its feasibility in IoT
environment. The contributions of this work are summa-
rized as follows:

� We present WSVA, a two-factor liveness detection
system to thwart the various voice spoofing attacks
aiming at VCS. By utilizing the existing wireless
signals in IoT environment, WSVA shows its advan-
tages of device-free, feasible deployment and pri-
vacy preservation.

� We study the correlation between voice samples and
wireless signals. Specifically, we build a mapping
model to correlate the syllables within voice com-
mand, the user mouth motions and their correspond-
ing CSI change patterns.

� We devise the architecture and algorithms of WSVA.
We exploit some effective technical mechanisms to
process voice samples and CSI data, design novel
algorithms to extract the features from these differ-
ent types of signals, and propose the liveness deci-
sion algorithm.

� We design and implement a testbed on Samsung
SmartThings platform to demonstrate the practicility
of WSVA. We evaluate the impact of various factors
on WSVA and our experimental results on 6 volun-
teers show that WSVA achieves 99 percent liveness
detection accuracy with 1 percent false accept rate.

In this paper (which is an extended version of the work
in [1]), we re-devise the signal processing and feature
selection method of WSVA to improve the liveness detec-
tion performance. Besides, more factors are evaluated and
discussed. We point out that this paper does not propose
to use wireless signals for lip reading, since the existing
works ([19], [21]) have shown that the lip reading accuracy
is limited. Instead, this paper aims to utilize the consis-
tency between voice and CSI signals to authenticate the
voice commands.

The remainder of this paper is organized as follows. In
Section 2, we introduce the preliminaries of this work. In
Section 3, we introduce the research motivation by showing
the consistency between voice and wireless signal changes
during user’s voice commanding. We elaborate the detailed
design of WSVA in Section 4, which is followed by evalua-
tion, discussion and related work in Sections 5, 6 and 7
respectively. Finally, we conclude this paper in Section 8.

2 PRELIMINARIES

2.1 Attack Model

In this study, we consider the spoofing attack, which is
defined as that the adversary tries to fool the VCS by inject-
ing some pre-collected or forged voice commands as illus-
trated in Fig. 1. The existing studies show that there are
three major types of spoofing attacks.

� Replay attack. The adversary can deploy an audio
recorder to obtain the authentic user’s voice samples,
and then utilize a loudspeaker to play the voice com-
mands sythenized from pre-collected voice to spoof
the VCS [8].

� Hidden voice attack. Most of the VCSs leverage the
Mel-frequency cepstral coefficient (MFCC) extracted
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from human voice to perform speech recognition.
Thus the adversary can generate voice commands
which are heard as noise by human ears but contain
the user’s MFCC features to spoof the VCS [9].

� Inaudible attack. Recent studies show thatmanymicro-
phones have drawbacks on their system frequency
responses. The adversary thus can utilize ultrasonic
signals to synthesize voice commands which can not
be heard by human to spoof the VCS [10], [11].

Without loss of the generality, in the remainder of this
paper, we use spoofing attacks to represent the above-men-
tioned three kinds of attacks. Our proposed defense scheme is
based on the fact that, in the spoofing attacks, the fake voice
commands are generated by the machine rather than the
human, which means that there are no corresponding mouth
motions for these voice commands. This inconsistency can be
leveraged for performing liveness detection. Note that, there
exists another attack type—insider attack, which means the
adversary can break into the home and impersonate a real
user to inject fake voice command. However, this attack
model has a very strong assumption and is less practical in
smart home environment. Therefore, this attack type is not
considered in our proposed liveness detection scheme andwe
will discuss its defend strategy in Section 6.

2.2 Channel State Information

In this paper, we consider the Wi-Fi wireless communica-
tion protocol which is widely applied by many IoT devices
(e.g., smart camera and smart alarm) [22]. Wi-Fi standards
like IEEE 802.11n/ac support Orthogonal Frequency Divi-
sion Multiplexing (OFDM), which is designed to signifi-
cantly improve the channel capacity of the wireless system
[23]. In a wireless communication system with NTX trans-
mitter antennas, NRX receiver antennas and Ns OFDM sub-
carriers, NTX �NRX �Ns subcarriers will be utilized to
transmit signal at the same time.

CSI characterizes Channel Frequency Response (CFR)H in
different subcarriers. In this paper, we only consider the sys-
temwith only single antenna pair, and thusCSI data extracted
from a packet could be represented by Ns dimension vector.
And for the ith subcarrier, CSI valueHi can be defined as

Hi ¼ Hij jejffHi ¼ ae�j2pft; (1)

where a is the signal magnitude attenuation, f is the fre-
quency and t is the time-of-light. Given the length of signal
propagation path d, the signal wavelength � and the speed-
of-light c, t can be calculated as t ¼ d=c and Eqn. (1) can be
rewritten as

Hi ¼ ae�j2pct=� ¼ ae�j2pd=�: (2)

According to Eqns. (1) and (2), when the user speaks a
voice command, the movements of the lips and the jaw will
change the d and a of the wireless signal. These constructive
and destructive interference of several multi-path signals
will be reflected by a unique pattern in the time-series of
CSI values, which can be related to the presence of the legiti-
mate voice command. In this study, CSI extraction is quite
easy: we can deploy Universal Software Radio Peripheral
(USRP) [24] and COTS device (e.g., Intel 5300 NIC [25]) to
extract CSI with all subcarrier values and 30 subcarrier val-
ues respectively.

2.3 Articulatory Gesture

It is well known that the articulation is related to human
organs (e.g., vocal cords, tongue, lips, jaw), as shown in
Fig. 2a. The voice differences depend on the motions of
organs, which could affect the vibration frequency of the air
(i.e., the timbre). According to the air vibration position, the
procedure of voice generation can be divided into the fol-
lowing three stages:

i) Voice generation procedure starts when the air is sent
out from the thorax. The air passes through the vocal cords
comprising of cartilages and muscles, whose different
shapes and positions have a significant effect on the air
propagation. ii) The air arrives at the soft palate after pass-
ing through the pharynx. The soft palate controls the direc-
tion and speed of the airflow and decides whether it could
enter into nasal cavity. iii) The voice wave is about to leave
the mouth when the air arrives at the oral cavity, after which
the voice is spread in the air. In this period, the user can pro-
duce different phonemes with different motions of tongue,
lips and jaw, which is known as articulatory gesture.
According the the International Phonetic Alphabet [27], as
shown in Fig. 2, the users pronounce different phonemes
with different mouth shapes. For instance, as shown in
Fig. 2b, the position of the jaw can be half way opened and
fully opened when the user pronounce =e= and =a=
respectively.

3 MOTIVATION

In this section, we elaborate the rationale behind WSVA by
answering the following questions: first, do the mouth
motions really have the correlation with the change of Wi-Fi
signals? Second, how can we model this correlation between

Fig. 1. Illustrations of the attack to VCS.

Fig. 2. Articulatory gestures for voice pronunciation.
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the mouth motions and the CSI vibration? We answer these
two questions via performing a series of experiments.

3.1 The Influence of Mouth Motion on CSI

Fig. 3a demonstrates the typical scenario of human voice com-
manding in VCS environment such as SmartThings or Ama-
zon Alexa platform. When a user interacts with VCS, WSVA
exploits a pair of antennas of the IoT devices in the proximity
to collect the CSI data from Wi-Fi packets, and leverage a
microphone to record the voice samples simultaneously. Gen-
erally speaking, since CSI reflects the environmental construc-
tive and destructive interference on several multi-path signals,
the change of multi-path propagation caused by the mouth
motions during the voice speaking can generate a unique pat-
tern in the time-series of CSI values. In this case, we investigate
the influence of the mouth motions on the CSI, which can be
regarded as a liveness pattern of the user. As shown in Fig. 3b,
the dramatic fluctuations of CSI waveforms happen with the
occurrence of human voice command. However, as shown in
Fig. 3b, if an adversary launches the spoofing attack described
in Section 2.1, in which the fake voice command is injected
without any corresponding mouth motion, the attacks can be
easily detected due to the lack of the corresponding changes in
CSI data. Therefore, our experimental results validate our intu-
ition that it is feasible to leverage the consistency of fluctua-
tions between voice samples and CSI streams to detect the
spoofing attacks.

3.2 Modeling the Correlation Among CSI Vibrations,
Voice Syllables and User Mouth Motions

The previous works have demonstrated that human move-
ments can be sensed via wireless signals [28], [29], [30], [31].

However, in IoT environment, achieving very precise speech
recognition is less possible since it may beyond the sensing
capability of Wi-Fi signal. As shown in Eqn. (2), the sensing
capability of wireless signal depends on the wavelength of
the signals. In practice, the Wi-Fi signal (e.g., 12.5 cm wave-
length for 2.4 GHz) based sensing mechanisms cannot
accurately capture the tiny motion of human mouth. To
make matters worse, in addition to the motion of the tongue,
lips and jaw, Wi-Fi can hardly recognize the impact of other
vocal organs. According to the study of Dodd et al. [32], only
40 percent words in English can be recognized by only con-
sideringmouthmotions.

Although it’s not feasible to achieve accurate lip reading
via Wi-Fi signals, WSVA is devised to authenticate the voice
commands by checking the consistency between voice and
CSI signals rather than accurately identifying each syllable.
Therefore, in this paper, by analyzing the International Pho-
netic Alphabet, we classify the mouth motions into four cat-
egories, including hiant, grin, round, and pout, which
correspond to Figs. 4a, 4b, 4c and 4d, respectively. With the
exception of a few syllables (e.g., ) with non-significant
mouth motions, most phonetic syllables can be categorized
into one of these types. As shown in Table 1, the hiant, the
motion of opening the mouth largely, can pronounce the
phonemes like /a:/ and /æ/, which can be heard in words
“bar” and “cat”. The grin, the motion of grinning human
mouth like Fig. 4b, can pronounce the phonemes like /e/
and /ei/, which can be heard in “A” and “base”. The round,
rounding lips at ease, can generate the phonemes like ,
which can be heard in “lot” and “saw”. Finally, the pout,
the motion pouting the lips, can send out the phonemes
like /u:/, which can be heard in words “root” and “shoe”.
After such a classification, different types of mouth motions
can be correlated with different CSI features according to
relevant voice syllables, as mentioned in the following
sections.

4 SYSTEM DESIGN

4.1 System Overview

The basic strategy of WSVA to detect if a voice command is
an authentic one is checking the consistency between the
voice samples and its corresponding CSI data introduced
by mouth motions. The CSI data can be collected via a spe-
cialized device (e.g., USRP) or the COTS device. In the con-
text of s mart home, with the prevalent of IoT platforms
such as Samsung SmartThings, which controls the smart
devices with wireless signals, it is technically feasible to

Fig. 3. Illustrations of the basic idea of WSVA.

Fig. 4. Four types of mouth motion shapes.
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take advantage of these existing wireless infrastructures to
collect the voice samples and their corresponding CSI data
simultaneously.

As shown in Fig. 5, WSVA consists of the following four
modules. In Data Collection Module, when human voice is
detected by the VCS,WSVA collects the voice samples and its
corresponding CSI data. In Data Cleansing and Preprocessing
Module, WSVA exploits wavelet based method to remove the
noise inCSI, and segments the collected voice samples. Feature
Extraction Module enables WSVA to select appropriate fea-
tures from macro-level and mouth motion respectively.
Finally, Feature MatchingModule utilizes a classification mech-
anism to determine whether the received voice command is
an authentic one or suffering from spoofing attacks.

4.2 Voice Samples and CSI Data Collection

In this subsection, we introduce how to collect voice sam-
ples and the corresponding CSI data. For most of the VCSs
(e.g., Google Now and Amazon Alexa), they require the
user to speak a predefined magic word as a trigger. For
instance, Apple iPhone needs “Hey, Siri” and Amazon
Alexa needs “Alexa” to initialize their voice assistants. Only
when the voice trigger is recognized by the VCS, WSVA
will be activated and start to collect voice samples V and
CSI data H by utilizing microphone and antenna pair
respectively. To collect CSI, the antennas can be equipped
by the different devices, or incorporated in the same IoT
device. One of these antennas acts as a transmitter to contin-
uously send wireless packets (e.g., broadcast packets) and
the other receives packets and extracts CSI data from the
preamble sequences of these wireless packets.

4.3 Data Cleansing and Preprocessing

4.3.1 CSI Denoising

The original collected CSI data contain a large amount of back-
ground noises which should be removed for future liveness
detection. In this paper, for each subcarrier data from collected
CSI dataH,WSVA leverageswavelet-based denoising to elim-
inate high frequency noises as the following three steps.

Discrete Wavelet Transform (DWT). Generally speaking,
let Hi n½ � be the ith CSI subcarrier Hð:; iÞ, and this one-
dimension discrete signal can be expressed in terms of the
wavelet function by the following equation:

Hi½n� ¼ 1ffiffiffiffi
L

p
X
k

Wf½j0; k�fj0;k
½n�

þ 1ffiffiffiffi
L

p
X1
j¼j0

X
k

Wc½j; k�cj;k½n�; (3)

where L represents the length ofHi½n�. The functions fj0;k
½n�

refer to scaling functions and the corresponding coefficients
Wf½j0; k� refer to the approximation coefficients. Similarly,
functions cj;k½n� refer to wavelet functions and coefficients
Wc½j; k� refer to detail coefficients. During the decomposi-
tion process, the origin signal is first divided into the
approximation coefficients which depict the trend of origin
signal and detail coefficients which retain the small scale
characteristics. Then the approximation coefficients are iter-
atively divided into the approximation and detail coeffi-
cients of next level.

Threshold Selection. After recursive DWT decomposition,
the raw signal is broken into detail coefficients Wc (high-
frequency) and approximation coefficientsWf (low-frequency)
at different frequency levels. Then, the threshold is applied
to the detail coefficients to remove their noisy components
and obatain new coefficients W 0

c. The threshold selection
is important because a small threshold will remain the
noisy components while a large threshold will lose the
major information of signals. In this study, we empirically
choose an adaptive minimax threshold based on the exper-
imental results.

Wavelet Reconstruction. After the above two steps, we
reconstruct the signal to achieve noise removal by combin-
ing the coefficients of the last approximation level Wf with
all thresholded details W 0

c. In this study, we choose Daube-
chies D4 wavelet [33] and perform 4-level DWT decomposi-
tion in wavelet denoising. As shown in Fig. 6c, after
wavelet-based denoising, most of the burst noises in Hi can
be removed.

4.3.2 Voice Samples Segmentation

After performing wavelet-based denoising, it is observed
that the CSI waveform shows a strong correlation with

TABLE 1
Four Categories of Mouth Motions and Their

Corresponding Syllables

Fig. 5. Workflow of WSVA.
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mouth motions. In order to verify the consistency between
CSI and voice samples, it is critical to detect the start and
end points of each mouth motion samples. However, since
the CSI waveform has many break points, applying the
burst detection method [34] directly on CSI data does not
work well in this case. Therefore, we first perform word
level segmentation and phoneme level segmentation on
voice samples, and then extract the corresponding CSI data
according to the timestamps.

Word Level Segmentation. When the user speaks a com-
mand, there is a short interval (e.g., 200 ms) between the
pronunciation of two successive words. Therefore, the inter-
val between two word samples can be utilized to segment
voice command into different word samples. WSVA
exploits double-threshold detection method in this paper.
Specifically, WSVA splits the voice samples V into frames
of Nv points length, with shifting Ns points each time. In
this study, Nv and Ns are set to 512 and 256 respectively.
For totally N frames, WSVA calculates their short term
energy STE½n� and zero-crossing rate ZCR½n�, and selects
two adaptive thresholds for STE½n� and ZCR½n� to detect
the start and end points sv;i and ev;i of the ith word Wi.
Then, according to the timestamps, we can also divide the
CSI data into several word waveforms. Fig. 6 illustrates the
proceeding of inter word segmentation. For the kth CSI sub-
carrier Hð:; kÞ, its corresponding ith word’s CSI waveform
Wi can be represented as follows.

HW;i ¼ Hðsc;i : ec;i; kÞ; (4)

where sc;i and ec;i are the start and end CSI indexes of the ith
word Wi which are converted from the timestamps sv;i and
ev;i on voice samples. Note that, si and ei are extended on
both sides by 200 CSI indexes respectively, due to the fact
that the CSI change introduced by the mouth motion can be
occured a little bit earlier or later than the speech can be
heard.

Phoneme Level Segmentation and Mouth Motion Inference.
For a specific word, pronouncing it may involve more than

one mouth motion. For instance, speaking the word “open”
needs the mouth motions of “round” and “grin”. Besides,
as mentioned in Section 3.2, the correlation between differ-
ent categories of mouth motion and CSI vibration types is a
key factor which can be leveraged in liveness detection.
Therefore, the next step of WSVA is dividing the given CSI
word waveforms into multiple CSI mouth motion wave-
forms, and then calculates the similarity between the col-
lected CSI mouth motion waveforms and pre-trained CSI
motions data.

Similar to word level segmentation, WSVA processes the
voice samples of the user and infers the start and end points
of each mouth motion. In particular, WSVA first utilizes
automatic speech recognition to identify each word of a
voice command. The state-of-the-art system DeepSpeech
[35] is adopted to perform such a task automatically. After
identifying existing words, WSVA then utilizes Munich
Automatic Segmentation System (MAUS), a widely adopted
phonetic segmentation system [36]. MAUS is based on the
Hidden Markov Model method, and it can label the pho-
nemes of voice signals by analyzing the sound file and text
description of the voice. Specifically, based on standard pro-
nunciation model, the identified text will be transformed
into expected pronunciation. Then, a probabilistic graph
will be generated by combining the canonical pronunciation
with millions of different accents, which contains all possi-
ble phoneme combinations and the corresponding probabil-
ities. MAUS finally adopts Hidden Markov Model to
perform path search and find the combination of phonetic
units with the highest probability.

After combining phonemes into syllables, and inferring
the mouth motions according to International Phonetic
Alphabet, we can obtain the segmented and labeled mouth
motions of the inputting voice command. WSVA matches
the timestamps of each segmented motion to the CSI sam-
ples to extract CSI mouth motion waveforms as the method
defined in Eqn. (4). One example is illustrated in Fig. 7,
which segments a voice command (“Open the door”) into
several phonemes and extracts the CSI mouth motion wave-
forms. It is worth mentioning that since the number of voice
commands commonly used in VCS is limited, the perfor-
mance of speech recognition can be improved according to
pre-defined common commands set. In addition, WSVA
also utilizes inter word segmentation result to improve the

Fig. 6. An example of word level segmentation.

Fig. 7. An example of the mouth motion detection.
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phoneme segmentation performance. After these steps, we
obtain the start and end points of all Nm mouth motions
M ¼ fM1;M2; . . . ;MNmg in a voice signal, and then extract
the CSI dataHMi

fot the ith mouth motionMi.

4.4 Feature Extraction

After data cleansing and pre-processing on CSI and voice
samples, WSVA selects the appropriate features to charac-
terize the consistency between these two types of signals.
As mentioned in Section 3.1, in the macro level, it is
observed that CSI variation occurs along with the human
pronunciation. Besides, the CSI data of different mouth
motion types show different features, which is another crite-
rion to describe the consistency. Therefore, WSVA extracts
features from both macro-level and mouth motion level to
determine whether the voice command and the mouth
motion are consistent.

4.4.1 Macro-Level Feature Extraction

In particular, after performing wavelet denoising, CSI data
still compose of Ns subcarriers (e.g., Ns = 52 in this study).
To remove the DC components in all subcarriers and extract
the strongest correlation component with mouth motions,
WSVA adopts PCA to extract the first principle component
HPCA of all CSI subcarriers H. Then, WSVA adopts Short
Time Fourier Transform (STFT) on both CSI data HPCA and
voice samples V to obtain their two-dimensional frequency
spectrograms. Figs. 8a and 8b show the frequency shifts on
the voice samples and the corresponding CSI data spectro-
grams in non-attack scenarios. It is observed that in a non-
attack scenario, the contours (marked by black lines) of CSI
and voice samples have similar variation trends. However,
as shown in Figs. 8a and 8c, in the spoofing scenario, since
the voice samples are injected by the adversary without any
user’s mouth motion, the CSI contour is disordered and not
in consistent with that of voice samples. Therefore, to mea-
sure the consistency between voice and CSI samples, an
intuitive solution is to calculate the similarity between the
spectrogram contours of these signals.

However, directly calculating the similarity between the
spectrogram contours of V and HPCA is inappropriate, since
the frequency shifts of these signals are affected by different
factors (i.e., voice tunes on voice and mouth movements on
CSI) which are not necessarily related. Instead, for the Nw

words W ¼ fW1;W2; . . . ;WNwg in the command, WSVA
calculates the similarity between contours of voice and CSI
signals for each word Wi, and then combines these similari-
ties to obtain the macro-level similarity SMacro . For the ith
word Wi, to calculate its similarity, we first extract the CSI
and voice samplesHWi

and VWi
which are represented as

HWi
¼ HPCAðsc;i � Lc;i : ec;i þ Lc;iÞ; (5)

VWi
¼ V ðsv;i � Lv;i : ev;i þ Lv;iÞ; (6)

where sv;i, sc;i, ev;i, ec;i are the begin and ending indexes of
ith word Wi on voice and CSI samples respectively. Lv;i and
Lc;i are the spans of the voice and CSI samples of Wi, in
which Lv;i ¼ ev;i � sv;i þ 1, and Lc;i ¼ ec;i � sc;i þ 1. Note
that, instead of directly using the Eqn. (4), we extend both
sides ofHWi

and VWi
to obtain more details about theWi.

Then, we extract the contour CCSI;Wi
from the frequency

spectrogramof ithword’sCSI data. First,we resize theCSI spec-
trogram with frequency from 0 to 30 Hz into a m-by-n matrix
MCSIðj; kÞ and normalize the MCSIðj; kÞ to a range between 0
and 1. Note that, inMCSIðj; kÞ, each column represents the nor-
malized frequency shifts during the jth time slide. Then, we
choose a pre-defined threshold and get the contour CCSI;Wi

ðjÞ,
where j ¼ 1 . . .n.CCSI;Wi

ðjÞ is themaximum value kwhich sat-
isfies that MCSIðj; kÞ � threshold. The process of calculating
contoursCV;Wi

for the voice spectrogram is similar to calculating
CCSI;Wi

. Besides, as mentioned in Section 4.3.2, we can set the
value CV;Wi

ðjÞ to 0 to eliminate the interference of background
noise, if the jth time slide is notwithin theword segments.

After obtaining CCSI;Wi
and CV;Wi

for Wi, we measure the
correlation between these two contours by adopting Pearson
correlation coefficient [37], which is defined as CorrðWiÞ.
CorrðWiÞ ranges from 0 to +1, where a higher value repre-
sents a higher level of similarity. To calculate CorrðWiÞ, we
first re-sample CCSI;Wi

and CV;Wi
into the sample length, and

CorrðWiÞ can be represented as

CorrðWiÞ ¼
Pn

i¼1ðCCSI;Wi
ðiÞ � CCSI;Wi

ÞðCV;Wi
ðiÞ � CV;Wi

Þ
ðn� 1ÞdCSIdV

����
����;
(7)

where n is the length of re-sampled sequences CCSI;Wi
and

CV;Wi
, dCSI and dVoice are the sample standard deviations of

CCSI;Wi
andCV;Wi

, respectively. After calculating the similarity
CorrðWiÞ for ith word Wi, for total wordsW ¼ fW1;W2; . . . ;
WNwg we could calculate the macro-level similarity SMacro as
follows:

SMacro ¼
PNw

i¼1 CorrðWiÞ
Nw

: (8)

4.4.2 Mouth Motion Feature Extraction

In the previous section, we have discussed how to obtain
the macro-level feature SMacro from CSI data and voice

Fig. 8. Illustration of the macro-level feature extraction.
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samples during the voice command pronunciation. How-
ever, it may be not enough to perform liveness detection
only relying on SMacro. For example, the dramatic change of
environment may generate the drastic vibrations of CSI
data, which lead to a deviated contour CCSI;Wi

and a higher
similarity CorrðWiÞ for detected word Wi. Therefore, to fur-
ther improve detection performance, WSVA will extract the
mouth motion level features from both time and frequency
domain perspective in this subsection.

Time Domain Feature Extraction. Fig. 9 shows the ampli-
tudes of CSI syllable data belonging to four mouth motion
categories. It is observed that the CSI waveforms belonging
to the same mouth motion category have the similar shapes.
For instance, in Fig. 9a, the waveforms of syllable =a:= and
=la:= which belong to the motion “hint” have the similar
waveform shapes and amplitude vibrations. And it is also
discovered that the ranges of CSI amplitudes from different
mouth motion categories are quite different. For instance, as
shown in Figs. 9a and 9d, the CSI amplitude ranges of sylla-
bles =a:= and =la:= are much larger than syllables =u:= and
=gu:=. Thus we can extract the ranges from the CSI wave-
forms as their time domain features. For a given CSI mouth
motion M and its CSI data HM , the CSI time domain feature
RangeðMÞ can be calculated as

RangeðMÞ ¼
XNs

i¼1

MaxðHM;iÞ �MinðHM;iÞ
Ns �MeanðHM;iÞ ; (9)

whereNs represents the number of CSI subcarriers andHM;i

represents the ith subcarrier of HM . Note that, the PCA
processed data HPCA is not utilized in this scenario, since
the PCA process will distort the signal’s range.

FrequencyDomain Feature Extraction. In timedomain feature
extraction part, the CSI waveform shape changes over time.
However, the experimental results show that the frequency
shifts of CSI data caused by mouth movement have a rela-
tively stable pattern. Fig. 10 shows the STFT spectrograms of
syllableswhich are displayed in Fig. 9, and the contours of fre-
quency spectrograms with three different thrresholds (i.e.,
Thr1 = 0.2, Thr2 = 0.5, Thr3 = 0.8) are marked as solid lines. It
is observed that the CSI syllable data from different mouth
motion categories have quite different contours. For instance,
the contours of syllables =a:= and =la:= are more widely than
that of =e:= and =ge:=. Therefore, for a given mouth motionM
and its CSI data HM , we can utilize the contours of CSI

spectrogram as the frequency features. In this study, we
choose these three thresholds {Thr1, Thr2, Thr3} and obtain
the corresponding contoursCM;Thr1; CM;Thr2 andCM;Thr3. After
that, each contour CHM;Thri is compressed to Nc points (e.g.,
Nc is 5 in this study), and WSVA merges these compressed
contours into the feature vector FM with 3�Nc elements.

4.5 Similarity Comparison and Liveness
Identification

Before performing liveness detection, it is reasonable to
assume that the user can provide totally J-by-N pre-collected
CSImouthmotion dataHPre, which contain J syllable catego-
ries (i.e., four motion categories proposed in Section 3.2) and
each category containsN motions’ CSI dataHPreði; jÞ, where
j ¼ 1; 2; . . . ; N . Then, for a given voice command input con-
taining NM mouth motions M ¼ fM1;M2; ::; MNM

g which
belong to four motion categories, WSVA processes the voice
samples V and CSI dataH using the above mentioned mod-
ules. After that, WSVA obtains the macro-level similarity
SMacro and the mouth motion feature RangeðMiÞ and FMi

for
eachmotionMi.

Mouth Motion Feature Combination. For a given motion
M, WSVA first calculates the time domain range differ-
ence SMRTimeðiÞ between its feature RangeðHMÞ and pre-
collected ith mouth motion category’s features, which can
be calculated as

SMRTimeðiÞ ¼
XN
j¼1

RangeðHMÞ �RangeðHPreði; jÞÞ
N

����
����:

(10)

Since the corresponding motion catrgory of M can be
calculated from the voice processing module as described
in Section 4.3.2, we can calculate the time domain similar-
ity score between M and its corresponding motion type as
follow:

STime ¼ Min 1� SMRTimeðtypeÞ
MaxðSMRTimeÞ þ a; 1

� �
; (11)

where type represents the motion type of M, which ranges
from 1 to J . The resulted STime ranges from 0 to 1, and the
value closer to 1 indicates a high level of similarity. Note that,
the function of adjustment factor a is to prevent STime from
being zero, andwe empirically set a to 0.1 in this study.

Fig. 9. Time domain of four mouth motion types. Fig. 10. Frequency domain of four mouth motion types.
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Then, WSVA compares the similarity between the fre-
quency domain feature FM of M and the J-by-N features
FPreði; jÞwhich are extracted from pre-collected motion data
HPre. Different from the previous work [1] which utilizes
Dynamic TimeWarping with OðN2Þ time complexity, in this
paper, to speed up the computation, WSVA exploits neural
network based solution to characterize the similarity. WSVA
utilizes the pre-collected CSI data HPre to train a forward
propagation neural network net with 20 neurons in the hid-
den layer. For a given CSI data HPreði; jÞ, the input for net is
frequency domain feature FPreði; jÞ and the training label is
the mouth category number. In this study, we set the cate-
gory numbers for motion “hiant”, “grin”, “round” and
“pout” are 1, 2, 3 and 4 respectively. After training, in the
ideal case, net could map a specific motion feature FM to its
corresponding motion type. The similarity between M and
the ithmouthmotion category can be calculated as

SMRFreqðiÞ ¼ netðFMÞ � labelðiÞj j; (12)

where labelðiÞ is the label of ith motion category, and
netðFMÞ is the prediction of net.

Similar to Eqn. (11), WSVA calculates the similarity score
between FM and its corresponding motion category type as

SFreq ¼ Minf1� SMRFreqðtypeÞ
MaxðSMRFreqÞ þ a; 1g; (13)

where the adjustment factor a is set to 0.1, and the result
SFreq closer to 1 indicates a high level of similarity.

After obtaining the time domain similarity score STime

and the frequency domain similarity score SFreq of a given
mouth motion M, we can calculate the combination mouth
motion level similarity score SMotion as

SMotionðMÞ ¼ STime � SFreq: (14)

Liveness Detection. For a voice command which contains
NM mouth motions belonging to four motion categories,
after performing mouth motion feature combination, we
obtain its macro-level feature SMacro and the mouth motion
score SMotionðMiÞ of each motion Mi, where i ¼ 1; 2; . . . ; NM .
Then, we can calculate the finial decision score of the input,
which is calculated as

Score ¼ SMacro �
YNM

i¼1

SMotionðMiÞ: (15)

We utilize threshold based mechanism to perform
human liveness detection in this paper. For the given voice
command input, if its Score is larger than the pre-defined
verification threshold, WSVA regards it as an authentic
voice command. Otherwise, WSVA judges it as a fake com-
mand and refuses to execute it. In the next section, we will
give a detailed experimental evaluation.

5 PERFORMANCE EVALUATION

In this section, we conduct a series of experiments to evaluate
the performance of WSVA in different scenarios, and explore
the implementation ofWSVA in real-world IoT environment.

5.1 System Setup

Hardwares. WSVA consists of two hardwares: i) an Univer-
sal Software Radio Peripheral N210 device which connects
two commercial Wi-Fi antennas, and ii) a microphone,
responsible for collecting voice samples. In the experiment,
the distance between antennas and human is 20 cm. When a
user speaks a voice command, the USRP N210 collects CSI
data at the rate of 1,000 packets/second in 2.4 GHz Wi-Fi
frequency with the 1/2 BPSK modulation mechanism, and
the microphone collects the voice samples simultaneously.
We exploit USRP rather than COTS device (e.g., Intel 5300
NIC) to collect more stable CSI data, since some commercial
devices change its power adaptively and result in unstable
CSI measurements. However, USRP and COTS devices
have the same wireelss functions in essential.

Data Collection. Our experiment totally recruits 6 volun-
teers. Before performing voice command, each volunteer
was required to perform the four categories of mouth
motions (i.e., the corresponding syllables) for 10 times as
WSVA’s pre-collected CSI profiles. Then, each volunteer
performs voice commands and the adversary performs
spoofing attacks using this volunteer’s voice profiles.
WSVA finally performs liveness detection by analyzing the
collected CSI data and voice samples with the volunteer’s
mouth motion profiles.

Metrics. To assess the performance of WSVA, we choose
the False Accept Rate (FAR) and the True Accept Rate
(TAR) as evaluation metrics. TAR is the rate which WSVA
detects the authentic user correctly, while FAR characterizes
the rate which an attacker is wrongly accepted by the sys-
tem and considered as an authentic user. Both FAR and
TAR are influenced by varying the pre-defined verification
threshold, and we show their relationship using Receiver
Operating Characteristic (ROC) curve. In our experiment,
we adjust the verification threshold value of WSVA to study
more comprehensive results.

5.2 Thwarting Spoofing Attacks

In this subsection, we evaluate the effectiveness of WSVA to
defend against spoofing attacks. First, for each volunteer,
he/she is required to provide his/her pre-collected CSI pro-
files and speak 150 legitimate voice commands. After that,
we perform spoofing attacks as described in Fig. 3 by using
each volunteer’s voice profiles for 750 times. We totally col-
lect 5,400 voice commands, and in a given command, the
numbers of mouth motions belonging to the four types as
mentioned in Section 3.2 range from 4 to 8. The ROC curve
of WSVA in detecting live users in non-attack scenarios
and spoofing attack scenarios is depicted in Fig. 11. We
can observe that with 1 percent FAR, the TAR is as high as
99.2 percent when WSVA exploits combined features Sscore.
Moreover, we find that the TAR relying on mouth motion
feature is better than that relying on macro-level feature.
More concretely, with 1 percent FAR, the TAR relying on
mouth motion feature still keeps above 99 percent. How-
ever, the TAR relying on macro-level feature is reduced to
90.2 percent. The reason is that the macro-level features are
more susceptible to the environment noise. After collecting
voice and CSI data, the average time delay of performing
each liveness detection is 0.26 seconds, which is acceptable
in practice and is smaller than that in previous work (i.e.,
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0.32 second in [1] with the same hardware condition). In
summary, our experimental results well validate that
WSVA is highly effective in defending against spoofing
attack, while the macro-level feature and the mouth motion
feature can complement each other to improve the detection
performance.

5.3 Scale up to Multiple User’s Scenario

In Section 5.2, for each user, WSVA performs liveness detec-
tion based on his/her pre-collected CSI profiles. However,
in some smart home environments with multiple users, it is
less likely to collect each user’s mouth motion profiles. A
more desirable design is to collect profiles from only one
user but work for multiple users. In this section, we perform
experiments to evaluate the scalability of WSVA. We first
recruit a volunteer to provide WSVA with his/her mouth
motion profiles which record his/her articulatory gesture.
Then we recruit another two volunteers to perform voice
commands for 300 times. After that, we also implement
spoofing attacks for 600 times. Fig. 12 shows the evaluation
result of WSVA, where WSVA achieves 97.6 percent TAR
with 1 percent FAR, and 97.9 percent TAR with 2 percent
FAR. Note that, the mouth motion feature based detection
rate (i.e., 89.6 percent TAR with 2 percent FAR in Fig. 12) is
less than that in Section 5.2. The reason is that the articula-
tory gesture of another volunteer is not the same as the user
who provides the pre-collected CSI profiles. However, com-
pared with spoofing attacks, WSVA can still achieve a high

detection accuracy, which demonstrates that it is also highly
effective in multiple users scenario.

5.4 Impact of Mouth Motion Number

In this subsection, we investigate how different mouth
motion numbers contained in the voice command affect the
performance of WSVA. In our experiments, the motion
numbers range from 4 to 8, and their corresponding accu-
racy are depicted in Fig. 13. The accuracy is the rate of suc-
cessfully detecting authentic and spoofing commands
among all commands under the 2 percent FAR. It is
observed that with the increase of mouth motion number,
the accuracy slightly rises from 97.5 to 99.8 percent. This
result indicates that a higher number of mouth motion can
reduce the impact of a single mouth motion misjudgment.
In the experiment, the accuracy decreases slightly when the
mouth motion number is greater than 6. This phenomenon
is caused by unsatisfactory data quality during the process
of data collection. Moreover, the accuracy exceeds 99 per-
cent when mouth motion number is greater than 4, which
means the features extracted from mouth motion by WSVA
are accurate enough for liveness detection.

5.5 Impacts of Distance and LOS/NLOS

In above evaluations, the volunteer is located at the line of
sight (LOS) places of antennas, and the distance between
user’s mouth and the receiver antenna is set to 20 cm. To
evaluate the impact of distance on detecting voice spoofing,
a volunteer is recruited to conduct experimentwith distances
of 50 cm, 100 cm, and 150 cm respectively. For each distance,
the volunteer is required to provide CSI profiles and gener-
ate 150 voice commands, and then loudspeaker is deployed
at the volunteer’s location to perform spoofing attacks 300
times. As shown in Fig. 14, it is observed that the detection
accuracy decreases when the distance becomes greater. By
using the combined feature, WSVA achieves over 99 percent

Fig. 11. Performance on thwarting spoofing attacks.

Fig. 12. Scaling up to multiple users.

Fig. 13. The impact of syllable length.

Fig. 14. The impact of distance on WSVA.
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TAR with 2 percent FAR when the distance is 50 cm. How-
ever, the TAR is decreased to 98 and 96 percent when the
distance is 100 cm and 150 cm respectively. Besides, The
TAR under 2 percent FAR decreases dramatically when only
utilizing macro-level feature (from 94 percent in 50 cm to
80 percent in 150 cm) and mouth motion feature (from
97 percent in 50 cm to 88 percent in 150 cm) individually.
It means that when distance increases, the impact of mouth
motion on multiple-path propagation of CSI becomes wea-
ker and causes the degradation of WSVA’s performance.
However, when the distance is set to 1.5 m,WSVA could still
achieve satisfactory accuracy (96 percent) using combined
feature, which is acceptable inmost cases.

To evaluate the performance of WSVA in the non-LOS
scenarios, two additional experiments are conducted. As
shown in Fig. 15a, the volunteer is required to stay out of
the line of sight area. To further demonstrate this scenario,
we consider a more extreme case in which we insert the
obstruction board to separate the transmitter antennas from
the receiver while the volunteer is at the same side of the
transmitter. The dataset obtained with the distance of 50 cm
as shown in Fig. 14 is chosen as the control group. The
experimental results are shown in Fig. 15b. When WSVA
utilizes combined feature, with 2 percent FAR, the TARs of
WSVA under wood obstruction and control group are still
over 99 percent. However, the TAR under iron obstruction
is decreased to 92.7 percent. More specifically, when only
exploiting mouth motion feature, the TARs under wood
and iron obstructions are decreased to 56 and 36 percent.
The results demonstrate that the obstruction in LOS could
degrade the wireless sensing capability, especially only
with the mouth motion feature extraction of WSVA. It is
notable that WSVA’s performance under iron obstruction is
much weaker than that under wood, since iron material in
LOS could cause greater multiple-path distortions. How-
ever, WSVA could still be effective under wood obstruction,
and it is feasible for the users to keep them on LOS places in
their own smart home.

5.6 Timeliness of Pre-Collected CSI Profiles

In ideal cases, the collected CSI patterns should be only
related to mouth motion and do not change with time. How-
ever, as reported by previous research [38], [39], CSI patterns
are changed over time in real-world scenario. To evaluate
the timeliness of CSI profiles, we first recruit a volunteer to
provide mouth motion profiles. Then, the volunteer and
adversary are required to perform 150 voice commands and
150 spoofing attacks with the time step of 12 hours. Fig. 16
shows the performance of WSVA in real-time, 12 hours and
24 hours. It is observed that after 12 hours, WSVA achieves
above 99 percent TAR with 1 percent FAR, which is similar
to real-time performance. After 24 hours, WSVA can still
achieve 90.6 percent TARwith 1 percent FAR by utilizing the
combined feature. Note that after 24 hours, the performance
of mouth motion based feature is decreased to 75.8 percent
TAR with 2 percent FAR. The performance degradation
may caused by the emotion changes of the user or the back-
ground environment changes. This is an inherent drawback
of CSI based sensing, but it does not hinder the deployment
of WSVA essentially. Adaptively updating the user’s profile
can effectively avoid the effects of environment changes
[39]. The updating can be processed during the user’s daily
usage of voice commands and the cost is affordable for
the user since we only utilize 40 mouth motion samples
for training.

5.7 Real-World Case Study

In this subsection, we explore the implementation of
WSVA in real-world IoT environment. In this study, we
study a popular smart home platform Samsung Smart-
Things, which can work cooperatively with Amazon Alexa,
a popular VCS around the world. We develop a SmartApp
(an intelligent application which can control multiple devi-
ces and let them automatically work together) in Smart-
Things platform to implement the function of WSVA. As
shown in Fig. 17a, the SmartThings hub interacts with the
Amazon Alexa, WSVA, a smart light, a smart switch and a
smart alert via wireless connections. Note that, the WSVA
and Amazon Alexa communicate with SmartApp by gen-
erating a virtual device in the SmartApp and deploying a
“skill” in Alexa backend respectively. When the Alexa
receives the user’s voice command such as “let there be
light”, its skill will send a message to the SmartApp, and
at the same time, WSVA performs liveness detection by
analyzing the collected voice and CSI data. SmartApp will
execute the voice command if and only if the liveness
detection is successful, and conduct the corresponding
operation (e.g., open the smart light). As shown in

Fig. 15. Evaluations of Obstructions.

Fig. 16. The impact of time.
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Fig. 17b, we ask the volunteers to speak three commands
(Listed in Table 2) which could be recognized by Alexa.

In this case study, each command is launched 10 times,
and we conduct attacks toward each command 50 times. In
liveness detection, when the verification threshold is set to
10�3, WSVA can achieve 100 percent TP with 3.3 percent FP.
As shown in Table 3, when decreasing the threshold, the FP
will rise while the TP remains 100 percent. In practice, the
threshold of WSVA is generally set from 5� 10�4 to 10�3,
which will provide good performance in most cases. For
each voice command, the average processing delay of
WSVA is 4.8s. We admit that this delay may affect the user
experience with the VCS. However, the main causes of this
delay are the speech recognition system DeepSpeech (1.9s,
accounting for 39.6 percent) and the I/O process of MAT-
LAB (1.7s, accounting for 35.4 percent). In order to reduce
these negative impacts, a feasible approach is creating a
smaller speech recognition model specifically for common
speech commands and implementing WSVA with special-
ized hardware equipment and algorithm, which will signifi-
cantly reduce the overall processing delay of WSVA.

6 LIMITATIONS AND DISCUSSIONS

6.1 Limitations

The performance evaluation part demonstrates the effec-
tiveness of WSVA on thwarting spoofing attacks. However,
there are some limitations that may degrade the detection
accuracy of WSVA and leave possibilities for adversary to
attack the VCS successfully.

Antenna and User Positions. In this study, the distance
between the user and the antennas of WSVA affects the per-
formance of WSVA. When the distance is too long (depend-
ing on the hardware condition), the collected CSI cannot
reflect the mouth motion components and result in inaccu-
rate judgment of WSVA. However, in smart home environ-
ment, many applications of voice control system leverage

voice command to control home appliances (e.g., light bulbs
and temperature), which also has the specific requirement
on the environment factors (including the distance). For
example, according to the CNET’s report about Amazon
Echo, it needs more than one Echo devices for full coverage
of a large home [40]. In practice, we can deploy multiple
antennas on smart home to make WSVA applicable in a
larger area or distance. When the user interacts with VCS,
WSVA could dynamically choose the antennas which are
closest to the user to collect CSI data.

Pronunciation Behaviours. Currently, WSVA can only
work for the situation that all users speak the voice com-
mands in English strictly according to the International Pho-
netic Alphabet. However, in reality, for the same phoneme,
different users may use different articulatory gestures [41],
[42]. In the experiment, two volunteers are required to pro-
nounce the phoneme /a:/ with standard articulatory ges-
ture (gesture 1 of hiant) and strange gestures (gesture 2 and
3). As shown in Fig. 18, although different articulatory ges-
tures will result in collecting quite different CSI waveforms,
it is also observed that when users utilize the same articular
gesture (e.g., the gesture 1 used by user 1 and user 2), the
collected CSI still have similar patterns. In the family sce-
nario with limited user numbers (generally 2-4 users), it is
feasible for these users to agree on a common articulatory
gesture. The detection accuracy is also improved by the uti-
lization of macro-level feature. Therefore, WSVA still has
high the practicality in multiple-user scenario.

Insider Attack. As described in Section 2.1, the adversary
can launch a more serious attack (i.e., insider attack),
which is not considered in this study. In an insider attack
scenario, the adversary can approach the VCS physically
and mimic the mouth motion of a benign user, therefore, it
brings the consistency between vibrations of CSI data and
voice samples, and decreases the performances of WSVA.
To reduce this risk, a potential method is that the user
makes special adjustments to the WSVA. For example, the
user is required to perform some pre-defined and secret
additional mouth motions after each voice commanding.
As shown in Fig. 19, WSVA can distinguish between
benign users and insider attackers by detecting the exis-
tence of this additional motions.

Fig. 17. SmartThings App UI and system testbed.

TABLE 2
The Voice Commands in Case Study

Command Mouth motions

Make a call to my dad. grin, round, pout, hiant, grin.
Send amessage to my phone. grin, grin, pout, hiant, round.
set a two o’clock alarm. grin, pout, round, hiant.

TABLE 3
The FP and TP Rate in Real-World Case Study

Threshold 10�2 10�3 5� 10�4 10�4

Accuracy 20 (66.7%) 30 (100%) 30 (100%) 30 (100%)

TAR 0 (0) 5 (3.3%) 7 (4.7%) 35 (23.3%)

Fig. 18. CSI waveforms under different articulatory gestures.
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Differentiating Multiple Users. With the existence of
insider attack, it is reasonable to wonder whether WSVA
can differentiate multiple users. In the experiment, the user
differentiation is implemented based on the mouth motion
feature. Four volunteers are required to provide their CSI
profiles and generate 150 voice commands respectively.
Then we use the four profiles to train four neural networks.
When predicting, the commands are inputted into four neu-
ral networks separately. By which neural network provides
the highest prediction probability, we can infer the com-
mand is issued by which user. Table 4 shows the confusion
matrix of user differentiation. The mouth motion feature
achieves high accuracy on user differentiation.

However, achieving high user identification accuracy with
low FAR (e.g., 2 percent) is difficult. Note that user identifica-
tion is quite different from multiple-user scenario which dif-
ferentiates another user from the spoofing one. Fig. 20 and
Table 5 show the detecting resultswhenwe regard otheruser’s
voice as insider attack (as mentioned above). We can see that,
with 2 percent FAR, the average TAR is only 53.5 percent,
which is not affordable for most users. Therefore we do not
recommend using this method to defend against insider
attack, andwe leave it for futurework.

6.2 Compared With Previous Works

In this subsection, we compare WSVA with existing wire-
less signal based VCS protection method, and discuss the
difference between WSVA and lip reading methods.

Comparison Between WSVA and VSButton. Besides WSVA,
previous research [43], [44] also proposed a voice liveness
detection method named VSButton. As shown in Fig. 21,
the basic assumption of VSButton is that a voice command
should be generated when the user’s physical presence is
detected. Thus the main insight of VSButton is detecting the

human’s indoor motions in the room through CSI, and add-
ing a running condition to the voice assistant system to
enhance its security. By contrast, the insight of WSVA is dis-
tinguishing a fake voice command by checking the consis-
tency between voice samples and CSI. Technically, WSVA
is not limited to detecting human motions with CSI, but also
involves matching voice samples with the corresponding
mouth motion categories by utilizing phonetic-related
knowledge.

For the aspect of working scenario, since VSButtonmainly
detects the body movement which has large influence on
CSI, the effective detection range could achieve 8 meters,
which is much larger than that in WSVA (1.5 meters). How-
ever, the VSButton requires the user to move to activate the
voice assistance, which is not convenient when the user is sit-
ting or lying. By contrast, WSVA could still authenticate the
user’s voice commands in real time, as long as the user is
located in its working area. We summarize the differences
on Table 6, it can be found that while the methodologies of
VSButton and WSVA are different, their application scenar-
ios are quite complementary. Therefore the user can deploy
VSButton and WSVA simultaneously, and choose either of
them according to the actual situation to provide better pro-
tection for the VCS.

Comparison Between WSVA and Lip Reading. Previous
research have proposed some CSI based lip readingmethods
such asWiHear [19] andWiTalk [21]. Thesemethods attempt
to infer the contents of voice samples only through the CSI
information. However, in this study, we do not propose
to use wireless signals for lip reading, instead, WSVA aims
to utilize the consistency between voice and CSI signals to

Fig. 19. An example of the strategy to defend insider attack.

TABLE 4
The Results and Accuracy of User Differentiation

Fig. 20. The results when regarding another user’s voice as attack.

TABLE 5
The TAR and Accuracy of Thwarting Another User’s Voice

user 1 user 2 user 3 user 4

Accuracy 67% 64.8% 82.7% 88%
TAR 36% 31.6% 67.3% 78%
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authenticate the voice commands and defend voice spoofing
attacks targeted at voice control system.

In addition, due to the limitation of Wi-Fi signals (e.g.,
only 12.5 cm wavelength for 2.4 GHz), achieving high accu-
racy detection in lip reading is inherent difficult. For
instance, WiHear and WiTalk can only recognize 14 and 12
different syllables respectively, which means that many
voice syllables cannot be identified by CSI. Furthermore,
[20] shows not all voice syllable can be recognized by lip-
reading techniques in theory. For instance, the SilentTalk
[45] shows the ultrasonic based lip reading can only identify
12 basic mouth motions, even if ultrasonic (e.g., 17 mm
wavelength for 20 kHz) has stronger sensing capability than
CSI. However, in the application scenarios of WSVA, the
contents of the voice samples are easy to obtain. So instead
of recognizing syllables, the technical contribution of
WSVA is modeling the consistency between the voice sam-
ples and the CSI information to determine whether a voice
command is issued by a legitimate user.

7 RELATED WORK

Attacks Towards VCS. Voice interface has been the dominant
interface in consumer IoT environment [46], [47], [48]. How-
ever, its security issues have been proposed in recent rese-
arches [9], [10], [11], [49]. Besides traditional replay attacks,
Carlini et al. [9] showed that the adversary could produce the
voice signals that are difficult to understand by human but
could be interpreted to valid commands by VCS. Based on the
hardware limitations of VCS, Roy et al. [11] demonstrated that
its practical to exploits two high-frequency waves to inject
voice commands into VCS. Yuan et al. [49] found that the voice
commands can be stealthily embedded into songs to control
the target VCS, while not being noticed by a human listener.
Zhang et al. [10] exploited inaudible ultrasonic waves to inject
state-of-the-art VCS (e.g., Siri and Amazon Alexa) and this
attack could achieve almost 100 percent attack success rate for
Siri in office environment.

Defense Mechanisms Against VCS Attacks. To enhance the
security of VCS against the above attacks, many researchers
have proposed defense mechanisms [13], [14], [15], [16], [17],
[50], [51]. Papernot et al. [51] introduced a defensive distilla-
tion based mechanism to reduce the effectiveness of adver-
sarial samples on deep neural network, thus detecting
malicious voice commands. Chen et al. [14] explored mag-
netic field emitted from loudspeakers as the essential

characteristic for detecting VCS Attacks. Feng et al. [16] pro-
posed a schemewhich utilizes the acceleration data collected
from the user’s wearable devices to achieve two-factor based
liveness detection. Zhang et al. [15], [17] utilized the Doppler
effect of ultrasonic generated from the loudspeaker of smart-
phone to perform liveness detection. Lei et al. [43], [44] pro-
pose VSButton to thwart voice spoofing by detecting the
presence of human via wireless signals, and we give a
detailed comparison in Section 6.2.

Wireless Sensing Technologies. Using wireless signals to
sense human motion has the advantages of device-free and
non-invasion, and recent studies [28], [29], [30], [31], [52]
demonstrate its feasibility. Shi et al. [28] showed that exist-
ing Wi-Fi signals generated by indoor IoT devices can be
utilized to achieve user authentication based on the daily
activities. Ali et al. [52] proposed a keystroke inference sys-
tems called WiKey, which uses the CSI waveform pattern to
distinguish keystrokes on a external keyboard. Tan et al.
[29] developed WiFinger to capture subtle changes of finger
movements for fine-grained gesture recognition. Qian et al.
[30] and Wang et al. [31] demonstrated using Wi-Fi signals
could achieve human localization and tracking with centi-
meter-level precisions.

8 CONCLUSION

In this paper, we propose WSVA, a device-free liveness
detection system to thwart the spoofing attacks aiming at
VCS. WSVA utilizes the prevalent wireless signals in IoT
environment to sense the human mouth motion, and then
verifies the liveness of voice command according to the con-
sistency between voice samples and CSI data. WSVA does
not require the user to carry any device or demand a large
number of training data. We implement WSVA on Smart-
Things platform to demonstrate its feasibility and the
results show that WSVA can achieve 99 percent detection
accuracy with 1 percent false accept rate.
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