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Abstract—Wireless charging is a promising solution for charg-
ing battery-driven devices pervasively. However, the wide de-
ployment of wireless charging stations is vulnerable to the
device masquerade attack, which causes financial loss when billing
or charging system damages like overheating and explosion.
Device fingerprinting is a classical technique to thwart the device
masquerade attack. But existing works either are vulnerable to
forging or require specialized equipment, which is not suitable
for wireless charging.

In this paper, we design a magnetic based fingerprinting sys-
tem MAGFINGERPRINT, which utilizes the alternating magnetic
signals as the fingerprint and is compatible with existing wireless
charging systems. MAGFINGERPRINT is convenient for the user
since it only employs commercial-off-the-shelf (COTS) magnetic
sensors and requires no action from users. In particular, for
the charging device, based on its intrinsic manufacturing errors,
MAGFINGERPRINT generates a unique fingerprint according
to the distinct magnetic changes during the wireless charging
process. It is shown that MAGFINGERPRINT can achieve an
accuracy of 98.90% on wireless charging exposed coils, while it
is also effective on different commercial wireless charging pads
of Apple, Huawei, and Xiaomi.

Index Terms—Device Fingerprinting, Wireless Charging, Mag-
netic Signal, Device Masquerade Attack

I. INTRODUCTION

Numerous battery-driven devices (e.g., smartphones, electric

toothbrushes, home appliances) in emerging IoT scenarios

[1] face the urgent demand of charging anywhere and any-

time. Wireless charging, due to its convenience and user-

friendliness, is being increasingly deployed in public infras-

tructures, such as airports, subway stations, cafeterias, and

electric vehicle charging stations. According to the report

published by Allied Market Research [2], the global wireless

charging market will reach 40.24 billion in 2027 with a

compound annual growth rate of 22.2% from 2020.

Despite the great benefits that wireless charging has brought,

recent studies [3] point out that it opens a door for the

adversary to launch a severe attack named device masquerade
attack [4], [5]. In this attack, the adversary can threaten the

security of both users and wireless charging systems (e.g.,
wireless power banks, public charging pads). As for the threat

toward the user, the attacker can masquerade as the victim’s

identity when billing, which will lead to the financial loss

of the victim user [4], [5]. Concerning attacking the whole

§ Haojin Zhu is the corresponding author.

charging system, the attacker can stick an adversary coil on

malicious devices to damage the wireless charging system [6],

which will cause overheating or even an explosion when

charging. As a result, the device masquerade attack poses a

great threat to deploying the wireless charging system.

The main cause of the device masquerade attack is that

current wireless charging systems lack an authentication mech-

anism for the device’s identity. Device fingerprinting is a

typical candidate authentication scheme, which builds a finger-

print (i.e., unique identifier) for each device to defend against

the device masquerade attack. In current device fingerprinting

mechanisms, a device’s fingerprint is always derived from the

following factors: password [7], mobile identification num-

ber [8], location [9] (e.g., Received Signal Strength (RSS),

the Channel State Information (CSI) [9]), and hardware differ-

ence [10], [11], [12] (e.g., accelerator, gyroscope) [10], [11],

[12], [13]. However, password [7] and mobile identification

number [8] can be forged by the adversary. Other schemes

like location [9] and hardware difference [10], [11], [12] either

require users to actively conduct actions unrelated to charging

or deploy non-commercial specialized equipment inside the

charging system for data collection which increases the user’s

burden during the deployment. In summary, existing works can

not be fitted into the wireless charging process non-invasively

and conveniently. Thus, it is crucial to propose a user-friendly

method to realize the device fingerprinting while keeping the

wireless charging working normally.

In this study, to overcome the aforementioned challenges

when applying existing schemes in wireless charging, we

propose MAGFINGERPRINT, a passive device fingerprinting

system that leverages COTS sensors to collect the magnetic

signals as a unique fingerprint without interrupting the normal

charging process or requiring the user’s participation. Further-

more, it can also serve as an alternative solution for two-factor

authentication based on hardware characteristics, which can be

compatible with existing authentication solutions.

Our basic insight is based on the phenomenon that wireless

charging signals can be served as a unique factor for device

fingerprinting. More specifically, when the device is under-

going wireless charging, the changeable wireless signal (i.e.,
the magnetic signal) has a unique characteristic related to the

device’s inherent hardware properties. Thus, via contact-less

collecting and analyzing the wireless signals, the unique device
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fingerprint can be passively constructed without requiring

any special actions from the device’s owner and the device

itself. However, it is still quite challenging to build such a

convenient, effective, and robust device fingerprinting scheme

based on this phenomenon. Particularly, we need to answer the

following research challenges: (1) How to collect useful data

conveniently? (2) How to effectively capture the distinct and

inherent factors inside devices when charging? (3) Considering

our MAGFINGERPRINT is the first magnetic based device

fingerprinting scheme in wireless charging, how to verify its

robustness in real world environments?

In this paper, we address these challenges as follows. Firstly,

for challenge 1, when a new device is placed at the charging

station, we collect the alternating magnetic signals leveraging

an array with four commercially available and tiny magnetic

sensors, which do not need to modify the internal circuit

for convenience consideration. Secondly, for challenge 2,

to capture the characteristics effectively, MAGFINGERPRINT

performs the pre-processing and noise filtering schemes to

improve the collected data quality. We also propose a com-

bined feature, which consists of temporal features, frequency

features, observed features, and auxiliary features. Finally, for

challenge 3, we implement MAGFINGERPRINT on widely-

adopted real world commercial wireless charging systems, in

which various factors (e.g., battery level, placement, back-

ground applications, training dataset size) are considered and

evaluated.

As for the performance of MAGFINGERPRINT, it can

achieve an accuracy of 98.90% when conducting the task

of identifying 20 smart devices with three popular commer-

cial charging pads, including Apple, Huawei, and Xiaomi.

Considering the impacts of various environmental factors,

MAGFINGERPRINT maintains a high accuracy of 91.95% even

in the worst case. Besides, the proposed MAGFINGERPRINT

is superior to existing systems in the experimental evaluations.

The contributions of this work are summarized as follows:

• We propose a novel passive magnetic based device fin-

gerprinting system MAGFINGERPRINT, which is conve-

nient and user-friendly. To the best of our knowledge,

MAGFINGERPRINT is the first device fingerprinting sys-

tem based on magnetic changes in wireless charging.

• We establish a wireless charging circuit system and

conduct case studies to verify the motivation of MAGFIN-

GERPRINT. Then, we design a novel array based data

collection method to extract the precise real time alternat-

ing magnetic signals and propose effective fingerprinting

features (e.g., time-frequency information, device charac-

teristics).

• We implement MAGFINGERPRINT on three commercial

wireless charging pads developed by Apple, Huawei,

and Xiaomi. The real world experimental results with

20 devices show that MAGFINGERPRINT achieves above

91.95% under various occasions, which proves its robust-

ness.

The remainder of this paper is organized as follows. The

Fig. 1. Illustration of wireless charging system.

background is introduced in Section II. We introduce the

insights for designing MAGFINGERPRINT in Section III. In

Section IV, we elaborate the details of MAGFINGERPRINT

which is followed by evaluation, discussion, related works,

and conclusion in Section V, VI, VII, and VIII respectively.

II. BACKGROUND

In this section, we introduce the preliminaries of this study,

including the details of the wireless charging process (i.e., the

mainstream protocol — Qi protocol and the electromagnetic

induction).

The development of wireless charging can be categorized

into two directions, radiative wireless charging and coupling

based wireless charging [14]. Radiative wireless charging

leverages the electromagnetic waveform to transmit the energy

in the electric field. Considering the coupling based wireless

charging, the insight is that the energy can be transmitted by

the coupling between the two coils (i.e., the primary coil, the

secondary coil in Fig. 1). The latter techniques are widely used

in terms of the IoT devices’ wireless charging, which follows

the open interface standard Qi [15] developed by the Wireless

Power Consortium (WPC).

Qi messages. The Qi standard developed by the WPC is

the mainstream protocol in the range of wireless charging,

which is widely used in smart devices when conducting

wireless charging. It can be divided into 5 phases, which

are the start phase, the ping phase, the identification and

configuration phase (ID&C), the power-transfer phase (PT),

and the ending phase. Firstly, the power transmitter sends a

packet to verify whether a device is valid. Secondly, a ping

packet is transmitted to receive an adequate replying packet

with enough density. Thirdly, the ID&C phase is used to set

up the configuration by packet transmission for the next phase

(i.e., power transferring). Then, in the PT phase, the energy

is transferred to charging devices. It also sends the “Control

Error” packet to optimize the charging progress. Finally, when

the receiver mutes the transmission, the charging process will

be ended simultaneously.

Electromagnetic induction. In the charging progress, the

electric field changes satisfy Faraday’s law of electromagnetic

induction[16], which is represented as ∇×E = −∂B
∂t , where

B refers to the magnetic flux density, and E denotes the

electric field. Besides, the displacement field D is calculated

as D = ε0E, where ε0 represents the electric permittivity.
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The magnetic changes are restricted to Ampere’s law.

∇×H = J +
∂D

∂t
,

∇×B = μ0J + μ0ε0
∂E

∂t
,

(1)

where H represents the magnetic flux density, and J denotes

the charging current density. And the derivation of the mag-

netic flux density B and the electric field E follows H = μ0B,

where μ0 refers to the magnetic permeability.

As shown in Fig. 1, the charging process can be clarified as

follows. After the prepossessing of the alternating current/di-

rect current (AC/DC) rectifier, the DC/DC converter, and the

DC/AC inverter [14], the high-frequency alternating current

(AC) will be sent to the primary coil, which will generate

an alternating magnetic field according to the Faraday’s law.

Simultaneously, the induced voltage will be generated in the

secondary coil due to the alternating magnetic field relying on

Ampere’s law in (1). The induced voltage is processed by the

rectification and filtering techniques and finally replenished at

the load (e.g., Li-on battery in smartphones).

III. THREAT MODEL AND MOTIVATION

In this section, we introduce the threat model, and elaborate

the insight of this study by circuit analysis, then validate the

insight on case studies.

A. Threat Model

When conducting wireless charging, the adversary in the de-

vice masquerade attack can threaten user and wireless charging

systems on both software and hardware sides. On the software

side, the attacker is capable of leveraging the broadcast nature

of wireless signals and the programmability of smart devices

to forge the devices. More specifically, the attacker can control

the devices and masquerade them as legitimate identities [4],

[5]. Thus, the malicious deduction can be performed when

billing since the attacker can charge the device using other

victims’ financial accounts [4], [5], especially in electric

vehicle charging. On the hardware side, the attacker can bypass

the authentication and stick an adversary coil on the malicious

devices when conducting wireless charging [6]. It may cause

overheating or even an explosion to threaten the user and the

system. Therefore, device fingerprinting should be proposed

to ensure the security of wireless charging.

B. Motivation

Based on the fact that there are subtle hardware differences

introduced by manufacturing errors in smart devices[17], our

study is based on the following insights: “subtle hardware
differences” in smart devices can lead to the unique alter-
nating current or magnetic changes during wireless charging,
which can be leveraged as fingerprints. To validate this insight,

we firstly develop a novel circuit based wireless charging

demo system by following the standardized Qi protocol. Then

we perform two case studies, which are designed to answer

the following questions: 1. Given a specific device, will the

magnetic field have significant changes if slightly modifying

Fig. 2. The circuit diagram of our established wireless charging demo system
following Qi protocol.

(a) An overview of our established demo system.

Current SensorARDUINO

AC/DC Converter

Test Equipment

Magnetic  
Sensor

Amplifier

Power Supply

Smart Device
Charging
Pad

Primary &
Secondary Coil

(b) A close look at the demo system components.

Fig. 3. Wireless charging demo system.

the electrical unit (i.e., “test equipment”) in the circuit? 2.

Given commercial devices even with the same brand and type,

is it possible to distinguish one from others by only exploiting

the magnetic device fingerprints?

1) Case Study 1: Demonstrating Impact of Subtle Hard-
ware Differences on Magnetic Field: When investigating the

impact of “subtle hardware differences” inside smart devices

when charging, to eliminate the distortion caused by various

electrical components (e.g., resistance, capacitance, specialized

sensor) types and running applications in commercial devices,

we establish an open and “clean” wireless charging circuit

system. We use a small component called “test equipment”

of the smart device circuit to model the “subtle hardware

difference”, which is set as the capacitive circuit (i.e., R+ 1
jwC )

or the pure resistance circuit (i.e., R). Note that, the settings

of the wireless charging system in Fig. 3(a), and 3(b), follow

the aforementioned wireless charging protocol — Qi protocol.

The settings of case studies. In Fig. 3(a), we implement two

personal computers to measure the magnetic intensity and the

current value respectively. The current measurement devices

consist of an INA219 sensor and an ARDUINO UNO for
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(a) Test equipment: R+ 1
jωC

, R =
1.00KΩ, C = 4.7μF .

(b) Test equipment: R, R =
1.00KΩ.

Fig. 4. Changing ”test equipment“ to model the subtle hardware differences.

controlling. The QMC5883 sensor is utilized for measuring

magnetic intensity. In Fig. 3(b), the secondary coil receives

the energy from the primary coil and transmits it to the next

component. We implement the AC/DC converter to generate

the direct current. The magnetic sensor is upon the secondary

coil to evaluate the magnetic intensity. The current sensor is

also connected in series in the circuit to measure the real time

current value. To show the results more obviously, LM358

is used as an amplifier for current. In experiments, the two

conditions of smart devices are set as the capacitive circuit

(i.e., R+ 1
jωC = 1.00KΩ+ 1

jω×4.7μF ) and the pure resistance

circuit (i.e., R = 1.00KΩ).

Results. The evaluation results well answer our first question

on the impact of subtle hardware differences on the magnetic

fingerprint. As shown in Fig. 4(a) and Fig. 4(b), when the test

equipment changes from R + 1
jωC to R, which models the

subtle hardware differences in the circuit (e.g., manufacture

errors and user usage in commercial devices), lead to observ-

able differences of current and magnetic when charging.

2) Case Study 2: Demonstration of Magnetic Fingerprint
Differences for Commercial Devices: To further validate the

insight that the magnetic difference when charging can be

leveraged as fingerprints to distinguish commercial smart

devices, we perform the case studies on commercial smart-

phones. We choose devices of different brands (i.e., an Apple

AirPods and a Huawei Mate40Pro) and devices of the same

brand and type (i.e., two iPhoneXRs).

According to Fig. 5(a) and Fig. 5(b), the magnetic field

changes have significant differences, which can be leveraged

as fingerprints among devices of different brands. Besides,

it is observed in Fig. 5(c) and Fig. 5(d) that even if the

smartphones are of the same brand and type, the differences

between magnetic field changes are still distinguishable for

device fingerprinting. This result well answers question Q2.

Thus, the above two case studies demonstrate the correct-

ness of the insight, which motivates our proposed MAGFIN-

GERPRINT in the next section.

IV. THE DESIGN OF MAGFINGERPRINT

In this section, we introduce the technical details of

MAGFINGERPRINT, which consist of four modules, the Data
Collection Module, the Pre-processing Module, the Feature
Extraction Module, and the Classification Module as shown

in Fig. 6.

(a) Magnetic data (AirPods). (b) Magnetic data (Huawei).

(c) Magnetic data (iPhoneXR 1). (d) Magnetic data (iPhoneXR 2).

Fig. 5. Magnetic field changes during the plug-in-plug-out charging.

Normalization

Inter device feature
Intra device feature

Fig. 6. System overview of MAGFINGERPRINT.

A. Data Collection Module

In this module, MAGFINGERPRINT collects alternating

magnetic changes in wireless charging. To capture tiny

changes accurately, we first conduct the sensor calibration and

design an array with four magnetic sensors in Fig. 7. Note that,

the magnetic sensor [18] is vertical to the coil plane and it is

placed beneath the primary coil on the charging pad.

Preparation phase: calibrating magnetic sensors. To mit-

igate the impact of the external environment and the sensor

placement, MAGFINGERPRINT calibrates the four magnetic

sensors before data collection. Specifically, we rotate the

magnetic sensors and gather the results together. As shown in

Fig. 8(a) and Fig. 8(b), after the calibration, the re-collected

calibrated data is more concentrated around 0, and the noise

of the external environment can be significantly mitigated.

Data collection phase: array based scheme. Considering the

fact that magnetic fields from various positions could provide

more fine-grained information about the target charging smart

device, we utilize a magnetic sensor array during data collec-

tion. As shown in Fig. 7, given a magnetic sensor Sensori
(i.e., the i-th magnetic sensor), the sampling rate is set to Fs

and the collected magnetic signal is denoted as Mi. When

the duration time is T , the collected sampled data Mi has P
sampling points, where P = Fs × T . Finally, the collected

sampled data with multiple sensors is transmitted to the Pre-
processing Module.
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Fig. 7. Real world settings of MAGFINGERPRINT and array based data
collection.

(a) Before calibration (time a). (b) After calibration (time b).

Fig. 8. Collected data before/after the sensor calibration in the first sensor.

B. Pre-processing Module

After obtaining the raw data, to eliminate the influence of

noises and low sampling rate, we design the Pre-processing
Module, which consists of three steps: de-noising, super-

sampling rate [19], and array based signal aggregation.

1) De-noising & Filtering: Since the collected data con-

tains external noises which shield the signal component related

to the device’s inherent characteristics, it is important for

MAGFINGERPRINT to conduct de-noising and filtering. We

implement a pre-emphasis mechanism and a moving average

filter for de-noising and filtering. More specifically, we denote

original sampled discrete data (i.e., the collected magnetic

signals) as Mi and the pre-emphasis process is as follows:

E[n] = Mi[n]− εMi[n− 1], n ≥ 2 (2)

where E[n] is the data after the pre-emphasis process and ε
is set as 0.9 empirically [20].

Furthermore, the moving average filter is used to smooth

the signal curves. The filtered data is calculated as follows:

FE[n] =

∑m=n−N+1
m=n E[m]

N
, n ≥ 2 (3)

where FE[n] represents the pre-emphasized data filtered by

the moving average filter. In this study, we empirically set

the window size N as 10. After conducting de-noising and

filtering, most noises existing in the collected signal are

removed.

2) Super-sampling Rate Reconstruction (SRR): Due to the

hardware constraint, the sampling rate of the commercial

magnetic sensor is limited as 100 Hz, which causes it hard to

capture the tiny signal changes and extract the characteristics

of the tested devices when charging. Thus, we implement

(a) Before SRR (time
period a).

(b) Before SRR (time
period b).

(c) After SRR (time
period a).

Fig. 9. Magnetic data reconstruction before/after SRR in the first sensor.

super-sampling rate reconstruction (SRR), which is used to

reconstruct the signal by using more samples from other time

periods involved [19]. Fig. 9 shows the collected magnetic

data before and after the super-sampling rate reconstruction.

It is observed that the reconstructed data contains more fine-

grained information, which shows the efficiency of SRR.

3) Refining Magnetic Signals from the Sensor Array:
In a practical charging case, the charging device is placed

arbitrarily, which causes the signal collected by a single sensor

inevitably deviates from its original form. Thus, we propose a

signal refining mechanism based on the data collected from the

sensor array deployed in Fig. 7. We first conduct a theoretical

analysis to prove the superiority of the sensor array. Then, the

signal refining process is introduced.

Theoretical analysis. As shown in Fig. 7, for the four-sensor

array, the first one is at (0, 0), and the k-th sensors’ coordinates

as (Xk, Yk) = (r ·cos(θ+ 2π(k−2)
N ), r ·sin(θ+ 2π(k−2)

N )), k =
2, 3, 4 . In this study, N is set to 3.

when charging, the secondary coil in the smart device is

regarded as a particle magnetic field, which is denoted as

M(x, y). When M is not directly right above the primary coil

in O(0, 0), in the single sensor scenario, the magnetic sensor

locates at O(0, 0). The distance between the single sensor and

secondary coil is d1 =
√
x2 + y2. In the sensor array scenario,

the distances (i.e., d1, d2, d3, d4) is calculated as follows:

d1 =
√

x2 + y2, dk =
√
(x−Xk)2 + (x− Yk)2. (4)

To measure the impact of the location of M on the collected

magnetic field, we define the aggregating distance as Aggrd. In

the single sensor condition, Aggrd = d1. When deploying the

sensor array, Aggrd denotes the minimum of the four distances

(i.e., Aggrd = min(d1, d2, d3, d4)).
When M changes in the ranges of −r ≤ x ≤ r, −r ≤ y ≤

r, we conduct a simulation experiment to prove the robustness

of Aggrd. For the settings, as shown in Fig. 7, the radius

r is set to 10 cm and the thickness of smart device h is 1

cm. As the coil can be placed at any angle when charging,

we set θ to π
6 . Fig. 10(a) and Fig. 10(b) show the simulation

results. It is observed that Aggrd in the sensor array condition

is much more stable than that in a single sensor condition.

Thus, according to the Biot–Savart law [21], the magnetic

field calculated in sensor array scenarios will be much more

accurate due to the stable Aggrd.

Signal refining mechanism. According to the theoretical

analysis, it is proved that the array based scheme can provide

more accurate data than that from a single sensor. Thus,
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(a) Single magnetic sensor. (b) Magnetic sensor array.

Fig. 10. Simulation results of Aggrd in two scenarios.

MAGFINGERPRINT dynamically selects the data from the

sensor Sensori in which di = Aggrd as the main signal

and regards other signals as assistance during the feature

generation in the next subsection.

C. Feature Extraction Module

In this subsection, we introduce the details of the features,

which consist of the temporal features, the frequency features,

the observed characteristics, and the auxiliary features.

1) Temporal Features: As defined in the Pre-processing
Module, the pre-processed collected data is defined as FE[1 :
P, i] for the i-th magnetic sensor, which contains the sampling

points P . As for the charging curve, MAGFINGERPRINT

captures the high peaks hp = [hp1, hp2, ..., hpk] and the low

peaks lp = [lp1, lp2, ..., lpk], where k denotes the number

of peaks. Then, MAGFINGERPRINT exploits the segmentation

schemes to divide the data according to the hp and lp. The

divided data for the i-th magnetic sensor is as follows:

FE[:, i] = [FE[hp1 : lp1, i], ..., FE[hpk : lpk, i]], (5)

which is set as the temporal features FTemp.

2) Frequency Features: Besides temporal features,

MAGFINGERPRINT also extracts features from the perspective

of frequency. For instance, as shown in Fig. 11(a) and

Fig. 11(b), when performing screen unlocking and locking

operations, the magnetic field will change in the wireless

charging scene. However, it is observed that the magnetic

data changes in the given time period are similar, which

demonstrates that simply utilizing the temporal features is not

enough. Therefore, MAGFINGERPRINT extracts frequency

features via the following two steps.

Exhibiting the device’s characteristics via frequency anal-
ysis. To extract frequency features, we first perform a Short

Time Fourier Transform (STFT) on the divided frames and

generate the corresponding frequency spectrum as S[:, :, i] =
[S[hp1×NFFT

Fs
: lp1×NFFT

Fs
, :, i], ..., S[hpk×NFFT

Fs
: lpk×NFFT

Fs
, :

, i]].
During the STFT process, for the i-th magnetic sensor,

S represents the frequency spectrum. A Hanning window is

implemented on the magnetic signals FE[:, i]. The overlap

window size is set as 48, which is the half size of the Hanning

window. To reduce the overhead of calculation, we implement

the cut-off frequency fband filter on S[:, :, i]. For the i-th
magnetic sensor, the processed Scut is represented as Scut[:, :
, i] = S[1 : Freq, :, i], where Freq = (fband × NFFT )/Fs,

where FFT points NFFT = 96, the Fs is set as 100 Hz in

(a) The first magnetic sensor data
in time domain.

(b) The second magnetic sensor
data in time domain.

(c) The first magnetic sensor data
in frequency domain.

(d) The second magnetic sensor
data in frequency domain.

Fig. 11. The magnetic data from different sensors in time domain and
frequency domain (when performing screen on and off).

this study. Freq denotes the number of the samples which

are limited by the frequency band fband. The size of S[:, :, i]
is calculated as widthspec[i] × heightspec[i], and the size of

Scut[:, :, i] is calculated as Freq × heightspec[i].

After performing the STFT, the collected data from

Fig. 11(a) and Fig. 11(b) are processed, and the generated

spectrums are shown in Fig. 11(c) and Fig. 11(d). It is

observed that the energy distribution in the spectrum diagram

is different, which is obvious in the white block and the black

block. Thus, STFT is useful for the collected data in this study.

Refining and finalizing the frequency features. After per-

forming STFT, MAGFINGERPRINT transforms the processed

data S[1 : Freq, :, i] to the grid matrix, which is represented

as G[:, :, i] for the data collected by the i-th magnetic sensor,

where i = 1, 2, 3, 4 in this study. For a given data collected

by the i-th sensor, the spectrum S[1 : Freq, :, i] is divided

into Mgrid×Ngrid chunks, then MAGFINGERPRINT calculates

the sum of elements in S[1 : Freq, :, i] in the range of the

corresponding generated grid matrix, which is as follows:

G[m,n, i] =

m×wg[i]∑

kw=(m−1)×wg[i]

n×hg[i]∑

kh=(n−1)×hg[i]

S[kw, kh, i], (6)

where wg and hg represent the width and the height of each

divided chunk, which is calculated as follows:

wg[i] = � Freq

Mgrid
�, hg[i] = �heightspec[i]

Mgrid
�. (7)

In this study, Mgrid and Ngrid are set as 80 and 100 respec-

tively. Then, the frequency features matrix is calculated as the

average value of the grid matrix from 4 different magnetic

sensors. The chunks in this matrix are still Mgrid × Ngrid.

Finally, we obtain the frequency features FFreq and its j-th

element can be represented as:

FFreq[j] =

Ngrid∑

k=1

4∑

i=1

G[j, k, i]

4
. (8)
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3) Observed Characteristics: To investigate the character-

istics between inter-type devices (i.e., different devices of

different types) and intra-type devices (i.e., different devices of

the same types), we design the observed characteristics, which

are denoted as FCha. As for the inter-type characteristics, it

consists of the mean value, the Root Mean Square amplitude,

and the spread of the spectrum. Considering the intra-type

characteristics, it contains the roll-off, the average value, and

the standard deviation of the spectrum.

4) Auxiliary Features: To further improve the effectiveness

of MAGFINGERPRINT, besides the aforementioned features,

we propose the auxiliary features. Firstly, for the processed

data FE[:, i] collected by the i-th magnetic sensor, we first

choose the magnetic field according to the array based analy-

sis. Then we perform the normalization operation to generate

the reconstructed data ReFE[:] as follows:

NormReFE [:] =
ReFE[:]−min(ReFE[:])

max(ReFE[:])−min(ReFE[:])
. (9)

Then we exploit a light-weighted feature extraction library,

LibXtract[22] on the normalized data NormReFE [:] to gen-

erate the auxiliary features (i.e., FAux).

5) Feature Aggregation: After generating all necessary

features, MAGFINGERPRINT aggregates the features X as

X = [FTemp, FFreq, FCha, FAux]. Then, MAGFINGERPRINT

exploits the FEAST toolbox [23] to rank the features and select

the top k features to reduce the calculation load. Then, the

generated features of the j-th devices Xj [1 : k] are transmitted

to the Classification Module.

D. Classification Module

In this subsection, after obtaining X from a given charging

device, MAGFINGERPRINT utilizes a classifier to determine

the device’s identity. We elaborate on the classifier building

and execution processes below.

Classifier construction. To build an effective and robust

classifier, we follow Section IV-A and Section IV-B to collect

data from various charging devices. Then, we extract the

features and label the identity of devices, which is built as

the feature dataset F = [X0[1 : k], ..., Xj [1 : k]]. After that,

we input training data into four classifiers (i.e., Support Vector

Machines (SVM)-Linear, SVM-rbf, SVM-poly, Naive Bayes).

The generated classifier is used in device verification.

Device verification. After obtaining a classifier by training, for

a given device, the classifier outputs the predicted identity. If

the predicted label is as it claimed, MAGFINGERPRINT regards

the device as benign and charges the given devices. Otherwise,

MAGFINGERPRINT regards it as the device masquerade attack

and declines the charging requirement. Note that, compared

with the deep neural networks, the light-weighted classifiers

in MAGFINGERPRINT can fingerprint quickly.

V. EVALUATION

In this section, we elaborate on the details of the experi-

ments. To demonstrate the robustness of MAGFINGERPRINT,

we evaluate the impact of environmental factors (e.g., battery

Fig. 12. Confusion matrix of the evaluated devices.

Fig. 13. Charging pad produced by different developers.

level, placement, background applications) and MAGFINGER-

PRINT’s configurations (e.g., training dataset size). Further-

more, we also validate the performance on different commer-

cial charging pads.

A. Experiment Settings

The experiment setting of data collection has been clar-

ified in Section IV-A. The magnetic data collected by

QMC5883 [18], is transferred to the serial converter, which is

visualized on a personal computer. We implement MAGFIN-

GERPRINT on a desktop with 64-bit Ubuntu 18.04 OS, Intel

Core i7 CPU, and 64 GB RAM. As for the ethnic considera-

tion, there are no human participants. Thus it is exempt from

the institutional review board (IRB).

In this study, we evaluate 20 devices in total. The charged

devices include smartphones from Apple, Huawei, Xiaomi,

and the AirPods from Apple. For the charging pad, the

experiments are conducted on the exposed coil and the other

three commercial charging platforms (i.e., MagSafe developed

by Apple, the charging pad developed by Huawei, and Xiaomi)

shown in Fig. 13. Note that, the tested devices are from

different manufacturers and follow the Qi protocol. As for the

settings, the charging process is set as 50 times per device, and

the battery level is set as 60%. All the background applications

are muted down, and the feature dimension is 200.

In summary, we collect 1740 samples from 20 devices on

4 different charging pads. The collected data is divided to

generate the training dataset and the testing dataset according

to the split ratio (i.e., 7:3), which is selected according to the
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TABLE I
OVERALL PERFORMANCE OF MAGFINGERPRINT

Classifier Accuracy (%) F-score Time Overhead (s)
SVM-Linear 98.90 0.98 0.30

SVM-Rbf 97.80 0.97 0.48
SVM-Poly 88.60 0.89 0.43

Naive Bayes 98.90 0.99 0.21

TABLE II
THE DETAILS OF THE EVALUATED DEVICES

Devices Details Producer Devices Details Producer
A1 AirPods3 Apple A2 iPhone11 Apple
H1 Mate40Pro Huawei H1 Mate40Pro Huawei
X1 Mi9 Xiaomi A3 P40Pro Apple
A4 iPhone12 Apple A3 P40Pro Apple
A4 iPhone12mini Apple X1 Mi9 Xiaomi
X2 Mi10 Xiaomi X1 Mi9 Xiaomi
A5 iPhoneXR Apple X2 Mi10 Xiaomi
A1 AirPods3 Apple A6 iPhoneSE Apple
H2 Mate20Pro Huawei A7 iPhoneXR Apple
A8 iPhone8 Apple H1 Mate40Pro Huawei

evaluations in Section V-D. Besides, the classification module

will select the best results among all the involved classifiers

if not clarified in Section V.

B. Overall Performance

The overall accuracy and time overhead are shown in

TABLE I. We implement the lightweight classification algo-

rithms (i.e., SVM-Linear, SVM-rbf, SVM-poly, Naive Bayes)

in Section IV-D.

The details of the participated devices are shown in TA-

BLE II. Besides, the overall time overhead (i.e., T imeoverall)
is comprised of the data collection (i.e., 17.05 seconds), the

feature generation (i.e., 0.74 seconds), and the classification

overhead (i.e., 0.30 seconds), which occupies 94.25%, 4.09%,

and 1.66%. The registration time is 18.09 seconds per device,

which is acceptable for device fingerprinting compared with

existing works (e.g., 55.50 seconds in [24]). As shown in

TABLE I and Fig. 12, MAGFINGERPRINT can classify the

devices with low time latency and high accuracy according to

the magnetic signals via wireless charging.

C. Impact of Environmental Factors on MAGFINGERPRINT

In this subsection, we evaluate the impact of various envi-

ronmental factors on MAGFINGERPRINT to demonstrate the

robustness of the proposed system. Except for the evaluation

of the given factors, all the experiments follow the same

configuration in Section V-A.

1) Battery Level: Since the process of wireless charging is

related to the current battery level [3], it is crucial to evaluate

the impact of battery level on MAGFINGERPRINT. To evaluate

this factor, we set the battery level of all devices as 20%, 40%,

60%, and 80%.

As illustrated in TABLE III, the accuracy decreases when

the battery level is increasing from 60% to 80% and 80% to

90%. It is because when the battery is nearly full, the charging

process will slow down [3], and fewer characteristics inside

the evaluated devices will be revealed during the testing time

period. However, the accuracy is still above 97.00%, which is

acceptable and stable to realize the function of fingerprinting.

TABLE III
IMPACT OF THE BATTERY LEVEL

Battery Level 20% 40% 60% 80% 90%
Accuracy (%) 98.70 98.90 98.90 97.80 97.20

F-score 0.99 0.99 0.99 0.98 0.98

TABLE IV
IMPACT OF THE PLACEMENT ANGLE

Placement
Angles Accuracy (%) F-score Placement

Angles Accuracy (%) F-score

0◦& 360◦ 93.05 0.94 180◦ 93.15 0.94
45◦ 91.95 0.93 225◦ 92.90 0.94
90◦ 95.80 0.94 270◦ 95.95 0.95
135◦ 99.90 0.99 315◦ 99.90 0.99

2) Placement: In the real world environment, It is known

that the user can place the smart devices randomly on the

wireless charging pad. To explore the impact of different

placements, we set the tested device at different angles. Each

tested device is rotated 45◦ in every trial, which is set as 0◦,

45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦.

As depicted in TABLE IV, the experimental results demon-

strate that MAGFINGERPRINT can maintain the fingerprinting

performance under various placements of the target device.

It reveals that the accuracy is above 91.00% regardless of

the changes in the placement angles, which demonstrates the

robustness and effectiveness of MAGFINGERPRINT in wireless

charging scenarios.

3) Background Applications: The state-of-the-art works

have proved that background application impacts the wireless

charging process [3]. When running background applications,

the charging rate will slow down [25]. The consumption

of energy when running the aforementioned applications is

different, which will affect the wireless charging process

differently. In this study, to evaluate the impact of background

running applications, we choose 4 typical applications, which

are TikTok, Chrome browser, WeChat, and Messages. More

specifically, we categorize the occasions into the single appli-

cation running and multiple application running.

As depicted in TABLE V, compared with the situation in the

overall evaluation (i.e., all the applications are muted down),

the accuracy of MAGFINGERPRINT will decrease when the

background applications are running. When the number of

the background running applications increase or more energy-

consuming applications are running, the accuracy will decrease

too. The reason is that, if the applications consume more

energy, fewer characteristics will be captured in the same time

period since less energy is distributed to wireless charging. In

summary, MAGFINGERPRINT still performs stably under the

occasion of background applications running.

4) Different Pads: To evaluate the performance of

MAGFINGERPRINT on the commercial charging platforms,

we deploy MAGFINGERPRINT on various charging pads (i.e.,
Apple MagSafe, Huawei, Xiaomi Charging Pad) in Fig. 13.

It is observed in Fig. 14 that the performance of MAGFIN-

GERPRINT is still above 80%, which is also effective on the

other commercial wireless charging platforms.
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TABLE V
IMPACT OF THE BACKGROUND APPLICATION

Single App
Running Accuracy (%) F-score Multiple App

Running Accuracy (%) F-score

Messages
(App1) 94.30 0.95 App1 & App2 93.25 0.94

Chrome Browser
(App2) 93.10 0.94 App3 & App4 92.25 0.92

WeChat
(App3) 93.30 0.94

App1 & App2
& App3 92.10 0.92

TikTok
(App4) 93.15 0.94

App1 & App2
& App3 & App4 92.85 0.92

Fig. 14. Performance on different commercial charging pads.

D. Impact of Configurations on MAGFINGERPRINT

In this subsection, we evaluate the impact of configurations

on the performance of MAGFINGERPRINT.

1) Size of the Training Dataset: To evaluate the cost of the

registration process, we change the proportion of the training

dataset in this subsection. It is adjusted from 30% to 90%.

TABLE VI shows that when the size of the training dataset

increases, the performance of MAGFINGERPRINT gets im-

proved, and the time overhead of training MAGFINGERPRINT

increases simultaneously. However, the overall performance of

MAGFINGERPRINT is above 93.00% and the time overhead of

MAGFINGERPRINT is 18.09 seconds for each participating de-

vice, which demonstrate the efficiency of MAGFINGERPRINT

when the bootstrapping time is limited.

VI. DISCUSSIONS

In this section, we discuss the limitations and the future

work of MAGFINGERPRINT.

Shapes and Sizes of Devices. In this study, the selected

wireless charging coil is in a round shape, which supports

most smartphones and some earphones. However, some Qi-

supported devices with no regular shapes (e.g., the charging

belt in smart toothbrushes) are not considered in this study.

For further study, we will implement MAGFINGERPRINT on

a larger dataset with more devices.

Signal obfuscation. As the device fingerprint is built accord-

ing to the alternating magnetic signal when charging, it is

required that the charging process should be normal. If it is

interrupted by signal obfuscation [26], [27], (e.g., the adver-

sarial coil attack [6]), the performance of MAGFINGERPRINT

will decrease due to the signal obfuscation. In future work,

we will consider overcoming this problem.

Long range transmission. Wireless charging techniques im-

plemented on smart devices are still limited to the range of

less than 30 cm, which is caused by the fundamental principle

of electromagnetic induction currently. In the future, we will

study how to enable MAGFINGERPRINT to work in a long

range transmission charging scenario [28].

TABLE VI
IMPACT OF THE SIZE OF TRAINING DATASET

Training dataset
proportion Accuracy (%) F-score Time Overhead (s)

30% 93.10 0.94 0.86
50% 95.00 0.95 0.91
70% 98.90 0.99 0.94
90% 98.95 0.99 0.97

Temporal stability of the tested devices. In this study,

temporal stability (i.e., fingerprints may change for a long

time) is an inherent drawback, but it does not hinder the

deployment of MAGFINGERPRINT. To overcome this issue,

MAGFINGERPRINT can update the device fingerprinting adap-

tively. Since the process can be conducted passively when

charging, the overhead is acceptable.

VII. RELATED WORK

In this section, we present the related works about charging

and device fingerprinting.
Existing works have shown the threat to charging. For

instance, [29], [30], [31] can deploy malicious applications

and steal user privacy via the wired power line. [3], [6], [32],

[33] also perform similar side channel attacks in wireless

charging. Thus, device fingerprinting is a crucial solution

for security consideration recently, like [7], [9], [10], [11],

[34], [35], [36], [37], [38], [39], [40]. It can be categorized

into the following kinds, identifying based on passwords [7],

identifying based on location [9], and identifying based on

hardware differences [10], [11], [12], [24], [41]. However, the

generation of fingerprinting by existing schemes is either easy

to be forged, or requires specialized equipment.
To the best of our knowledge, MAGFINGERPRINT is the first

work to construct the fingerprint by capturing the magnetic

signal changes in the wireless charging scenario, which is

convenient, effective, and robust.

VIII. CONCLUSION

In this study, we propose MAGFINGERPRINT, a novel

magnetic signal based fingerprinting system in wireless charg-

ing scenarios. MAGFINGERPRINT is the first work to uti-

lize magnetic signal changes via wireless charging to build

unique device fingerprints. Specifically, we establish a circuit

based wireless charging demo system to verify motivation and

propose novel mechanisms (e.g., array based data collection,

feature extraction) for designation. Various experiments are

conducted to evaluate the impact of possible factors (e.g.,
the environmental factors, the configurations) to prove the

usability. In summary, MAGFINGERPRINT is a convenient,

effective, and robust solution for device fingerprinting, which

is believed to be effective for identification.
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