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Abstract—Virtual reality (VR) can provide users with an
immersive experience in the metaverse. One of the most promising
properties of VR is that users’ identities can be protected
by changing their physical world appearances into arbitrary
virtual avatars. However, recent proposed de-anonymization
attacks demonstrate the feasibility of recognizing the user’s
identity behind the VR avatar’s masking. In this paper, we
propose AvatarHunter, a non-intrusive and user-unconscious de-
anonymization attack based on victims’ inherent movement sig-
natures. AvatarHunter imperceptibly collects the victim avatar’s
gait information via recording videos from multiple views in
the VR scenario without requiring any permission. A Unity-
based feature extractor is designed that preserves the avatar’s
movement signature while immune to the avatar’s appearance
changes. Real-world experiments are conducted in VRChat, one
of the most popular VR applications. The experimental results
demonstrate that AvatarHunter can achieve attack success rates
of 92.1% and 66.9% in closed-world and open-world avatar
settings, respectively, which are much better than existing works.

Index Terms—Virtual reality, De-anonymization attack, Move-
ment signature, Identity inference

I. INTRODUCTION

Facilitated by the development of virtual reality (VR), meta-

verse is regarded as a disruptive technique to reshape the way

that human beings connect with each other via digital avatars.

Compared with traditional human-computer interfaces (e.g.,
keyboard, mouse, touch screen), VR provides users with an

immersed experience via leveraging specialized devices such

as head-mounted display (HMD), hand-held controller, and

full-body tackers. Currently, VR has been deployed not only

in industrial scenarios including military training and medical

operation, but also in consumer cases such as virtual meetings

and immersing games. According to the report published by

Grand View Research, the market size of VR was valued

at USD 15.81 billion in 2020 and is expected to grow at a

compound annual growth rate (CAGR) of 18.0% from 2021

to 2028 [1].

Metaverse intrinsically supports privacy enhancement fea-

tures. In addition to the traditional privacy supporting tech-

niques (e.g., pseudonym), the user’s real identity could be

naturally masked by avatar, a digital representation of the user

in the virtual world [2]. Essentially speaking, the avatar has

the shape of a human but may contain extra characteristics

configured by the users themselves. For instance, in VR

games such as VRChat [3], the user’s physical appearance

‡ Haojin Zhu is the corresponding author.

is transformed into avatars with cartoon and fantastic shapes

to communicate and interact with each other anonymously in

virtual settings. Since users can customize their appearance

and sounds in the virtual world, the avatar brings the users a

feeling of being unlinkable to their real identities and avoiding

tracking by the potential external adversary.

The existing research on VR security mainly focuses on

VR devices’ functional integrity [4], [5] and the VR user’s

access control [6], [7], while the privacy issues receive less

attention [2]. Two recent studies investigate the privacy leak-

age issues in VR from the perspective of traffic analysis [8]

and side-channel-based de-anonymization [9]. Specifically, the

former analyzes the traffic payloads originating from Meta

Oculus Quest VR devices and shows that the victim’s identity

may be leaked to malicious VR developers [8], while the

latter tries to perform a de-anonymization attack in VR by

leveraging the malicious app to obtain the acceleration and

gyroscope data from the headset display and conduct the

user identification [9]. It is essential to point out that the

state-of-the-art works on privacy issues are based on strong

adversary models/assumptions (e.g., malicious app developers

or requiring data collections from VR devices). Motivated by

Ready Player One, a famous science fiction adventure film

in which protagonist Wade Watts hides his real identity by

changing his avatar’s appearance while the adversary tries

to learn his real identity, we consider a more practical de-

anonymization attack: by only observing a set of VR avatars
and real-world identities, is it possible for the external attacker
to perform a de-anonymization attack by linking the user’s real
identities to his avatars, even if the observed avatars could be
arbitrarily changed or modified? The motivating examples for

such kind of de-anonymization attack scenario include but are

not limited to: tracking users in an avatar-changeable VR game

such as VRChat [3] or an anonymous VR meeting [10].

In this study, we propose AvatarHunter, the first practical de-

anonymization attack, which aims to reveal the target victim’s

identity from her counterpart avatar’s movement behaviors in

the virtual world. Different from the existing de-anonymization

schemes in VR [11], [12], [13], [14], AvatarHunter neither

requires intruding into the victim’s network nor injecting

malicious apps. Instead, AvatarHunter adopts a new attack

manner, which only needs to record the video clips when

the target victim walks in the open virtual world to infer the

identity behind the victim’s avatar. AvatarHunter is motivated

by the following insight: in the metaverse, no matter how
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the avatars are changed, the victim’s inherent and unique

movement patterns (i.e., gait information in this study) remain

relatively stable, which could be exploited to link the user’s

avatar to her real identity.
Research challenges. To implement AvatarHunter, we need

to address the following three key challenges: (1) How to link

the user’s identity in the physical world to her avatar in the

virtual world for de-anonymization in a stable and reliable

way? (2) How to extract an effective feature that charac-

terizes the victim’s unique identity signature and is robust

to the avatar changes? Note that, when addressing the gait

video clips, existing computer vision-based gait recognition

schemes [15], [16], [17] are based on both movement and

appearance signatures, in which the latter is unstable since

the virtual appearance is frequently changed. (3) Considering

AvatarHunter is the first non-intrusive and user-unconscious

de-anonymization attack to link avatar and the real-world

identity in VR and there is no publicly available dataset so

far, how can we implement AvatarHunter in the real-world VR

application and demonstrate its effectiveness and robustness?
To address the above three challenges, we firstly introduce

a novel biometric signature, coined as movement signature,

to link the victim’s identity in the physical world and the

avatar in the virtual world. We further validate its feasibility

and robustness under the setting of changeable avatars via

a motivation example. Secondly, considering existing video-

based user recognition schemes, which concentrate on gait

samples in the physical world, are sensitive to distortions

caused by avatars’ changeable appearances, we design a novel

feature extractor when extracting the movement signature. The

insight is to let the extractor own prior knowledge about

various avatars. To achieve it, we leverage Unity, the largest

platform for developing VR applications [18], to automatically

generate abundant gait videos from various avatars. After

constructing the feature extractor based on abundant gait

videos originating from various avatars in Unity, AvatarHunter

is immune to the avatar’s appearance changes. Finally, we im-

plement AvatarHunter on VRChat, one of the most popular VR

applications owning 4 million users [19]. We deploy multiple

VR accounts as cameras to record gait video trials containing

100 volunteer-avatar pairs (i.e., 10 recruited volunteers with 10

different avatars). The experimental results show AvatarHunter

can achieve the attack success rate of 92.1% and 66.9% in

the closed-world and open-world avatar settings, respectively.

AvatarHunter is robust to various factors, including the number

of cameras, input video lengths, and the prior knowledge of

target victims. Our main contributions are summarized below:

• New attack paradigm. We present AvatarHunter, a non-

intrusive and user-unconscious de-anonymization attack

on the avatars in the VR scenario. AvatarHunter neither

requires access to the victim’s VR device nor the ap-

proval/permission of the victim.

• Novel de-anonymization method. We design a novel man-

ner to extract the identity-related movement signature

from the avatar’s video clips. By leveraging numerous

gait samples originating from various avatars in the

Physical world

Virtual world

User 1 User 2

Avatar 2Avatar 1

(a) Multi-user application.

Sensor data

Avatar design

Real movement

Skin mesh

Avatar
animation 

Skeleton build

Skeleton movement

Development 
platforms:

(b) Avatar generation process.

Fig. 1. Overview of VR application and avatar.

Unity platform, AvatarHunter is robust to the changeable

appearances of avatars.

• Open-source dataset. A dataset containing video trials

from 10 users with 10 avatars collected in the VR

application will be available to researchers, vendors, and

developers to assess the privacy risks in metaverse and

design countermeasures for de-anonymization attacks.

The remainder of this paper is organized as follows. Section

II introduces the necessary preliminary knowledge. Section III

illustrates the threat model and motivation. Section IV presents

the system design of AvatarHunter, followed by evaluations,

discussion, and related work in Section V, Section VI, and

Section VII, respectively. Finally, Section VIII concludes this

work.

II. PRELIMINARIES

In this section, we first review the framework of multi-user

VR applications. Then, we elaborate on the VR device and

the workflow of avatars in VR applications, respectively.

A. Multi-user VR Application Framework

With the popularity of VR technologies, the VR appli-

cations attract an increasing number of users to participate.

The VR platform provides various scenes, animations, and

communication functions for the participants. To ensure the

anonymization of users in the virtual world, the current multi-

user VR application framework employs the mechanism of

avatar. As shown in Fig. 1(a), in the multi-user VR application

scenario, the users on the client side first enter the virtual world

with the assistance of VR devices. Then, the users can conduct

various actions including chatting, movement, and gaming in

the VR application. To protect the user’s identity and increase

entertainment, the VR platform allows the users to transform

themselves into various avatars to hide their appearances in

reality. Besides, the users can also change their voices to

enhance their anonymity.

B. VR Device

There are many VR devices in the consumer market. To

improve the user’s interactive experience, current popular VR

devices (e.g., Meta Quest 2 [20], HTC VIVE pro 2 [21])

equip with not only general purpose sensors (e.g., gyroscope,

accelerator) but also human interactive sensors (e.g., controller
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handles). In this study, we choose a specific stand-alone

device named Meta Quest 2, as our study object.1 Quest

is developed by Meta which owns 90% of the global VR

headset market [22]. It consists of a system on chip (SoC) to

perform computation, an LCD to display visual contents, and

a microphone-loudspeaker pair to interact with the human via

the voice channel. Quest not only supports VR applications in

its official stores but also supports games from third-party VR

application platforms (e.g., Steam VR, SideQuest). Besides,

Quest can be connected to the laptop/desktop and provide

the developer with a view of its LCD screen (i.e., the view

watched by the user) for game video recording or application

debugging.

C. The Workflow of Avatars in VR Applications

As illustrated in Fig. 1(b), users can leverage the avatars to

change their appearance and hide their real-world identities in

the virtual world. In this subsection, we introduce the avatar’s

generation procedure, movement mechanism, and development

platforms.

1) Avatar Generation Procedure: In most VR applications,

the avatar is generated based on the skeleton animation mech-

anism [23] consisting of three steps. (i) Designing avatar
model: the designer first draws the static character sketch of

the avatar and then creates the corresponding model consisting

of abundant mesh structures in the 3D virtual space. (ii)
Building skeleton structure: for the generated 3D model of the

avatar, the skeleton is defined for action execution. The avatar’s

skeleton has the parent-child structure, which can be regarded

as the avatar’s bone and joint during the action period. More

specifically, when the parent node moves, the child node

will execute the corresponding movement according to the

mapping rules. (iii) Mapping skeleton and skins: skin is

the external appearance of the avatar in the virtual world.

After building the skeleton, the properties of the skin (e.g.,
positions, colors, materials, ornaments) related to the skeleton

are determined. When the avatar’s skeleton moves, the skin

will generate the related movements.

2) Mapping VR’s Sensor Data to Avatar Movements:
Different from traditional desktop applications in which the

user input devices are keyboard and mouse, in the VR scenario,

the avatar’s movement is highly coupled with the user’s phys-

ical movement behaviors. During the user playing in the VR

application, the data collected from the equipped VR helmet

and controller handles are mapped to the avatar’s skeleton.

Then, the skeleton is driven by the motion data and its related

skins are rendered in the virtual world.

3) VR Application Development Platforms: Several plat-

forms assist VR developers in generating and activating avatars

quickly. Unity is the typical platform by which 60% of popular

VR games [24] are developed. Unity also allows the developer

to set up the virtual scenario of VR applications and easily

construct and control the virtual appearance of avatars in

1In the following sections, we utilize the terminology Quest to refer to the
Meta Quest 2.

Physical 
world

Victim’s
avatar AvatarHunter

De-anonymization

Virtual 
World

Victim Attacker

Void avatar with 
virtual camera on

Fig. 2. Attack scenario.

C# based programs [25]. We utilize Unity platform when

extracting the victim’s features as described in Section IV-C.

III. ATTACK OVERVIEW AND MOTIVATION EXAMPLE

In this section, we first give a picture of AvatarHunter’s

attack scenario and elaborate on the adversary’s capabilities.

Then, we demonstrate the feasibility of AvatarHunter via a

motivation example. Finally, we formally define the attack

scenarios in this study.

A. Attack Model and Adversary Capabilities

1) Attack Model: Fig. 2 illustrates a typical attack scenario

of AvatarHunter. A victim is playing a VR game (e.g., VR-

Chat [3]) and transforms her appearance into an avatar. Mean-

while, the adversary also logins the same VR app in which

the victim plays and starts monitoring the victim’s behaviors

via recording the video displayed on the VR device’s screen.

Since the adversary can do the recording procedure without

any participation from the victim, the victim cannot recognize

it and believe her identity is well hidden behind the avatar.

However, from the adversary’s perspective, after finishing the

collection of the victim’s video clips, the adversary can launch

the de-anonymization attack based on the extracted biometric

signature related to the victim’s identity.

2) Adversary’s Capabilities: We assume the adversary in

AvatarHunter has two capabilities during the attack preparation

and implementation phases.

Attack preparation phase: acquiring avatar’s video with
identity label (i.e., gallery construction). It is well known

that in de-anonymization attacks [26], [9], the adversary has

to obtain the victim’s prior knowledge such as video clips

and identity labels in advance. Note that, in practice, there

are several ways to obtain the victim’s gait video clips.

For instance, when the target victim shows her identity in

the nickname, the adversary can actively record the video

of the victim’s avatar walking movement. The attacker can

also obtain such video clips from the victim’s social network

contents. We regard the pre-collected video clips as gallery in

this study.

Attack implementation phase: recording avatar’s video
without identity label. The adversary can enter the same

VR application as the target victim and record the video.

Note that, recording a video does not require any permission

and approval from the victim. Take a popular VR chatting

application, VRChat, as an example. The adversary can focus
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User A + Avatar X Video frames of A’s avatar X GEI

(a) The avatar movement signature of user A with Avatar X.

User B + Avatar X Video frames of B’s avatar X GEI

(b) The avatar movement signature of user B with Avatar X.

User B + Avatar Y Video frames of B’s avatar Y GEI

(c) The avatar movement signature of user B with Avatar Y.

Fig. 3. The relationship between avatar movements and user identities.

her sight on the victim and record the sight view (i.e., record-

ing the contents of the LCD screen of Quest or the remote

synchronization on the desktop). Furthermore, to avoid raising

any suspicion from the victim, the adversary can transform

herself into an invisible camera by employing the avatar with

a void appearance (i.e., the avatar becomes invisible).

B. Motivation Example

In this subsection, we utilize a motivational case study to

demonstrate the insight of AvatarHunter: when victims choose
avatars with various appearances to hide their identities, it
is possible to link their inherent movement signatures to their
identities.

In the case study, two volunteers (i.e., user A and user B)

are recruited and required to login into a VR application (i.e.,
VRChat). Firstly, these two volunteers use the same avatar

(i.e., avatar X) to walk for several seconds while we deploy

a virtual camera to record their gait video simultaneously.

Fig. 3(a) and Fig. 3(b) illustrate the collected video frames

and their extracted gait energy images (GEIs), which are

representations to characterize human walking properties [27].

It is observed that even though two users have the same

appearance in VR, their different gait behaviors cause their

GEIs to have significant differences, as illustrated in red

rectangles. Then, user B employs another avatar (i.e., avatar

Y ) and walks again. Fig. 3(c) shows the collected video frames

and GEI. We observe that the GEI in this case is similar

(although slightly different) to that when user B employs

avatar X and is quite different from that of user A as shown

in red rectangles. Therefore, it is feasible for AvatarHunter to

reveal the avatar’s identity based on the observed gait video

clips during walking.

C. Closed-world and Open-world Avatar Settings in Attack

According to the adversary’s capabilities and the chal-

lenges caused by avatars’ changeable appearances, we divide

AvatarHunter’s attack scenarios into two types.

Attack Initialization Module

Gallery Construction

Data Pre-processing Module

Background Elimination

Identity Inference Module

Classifier Training

Victim Video Recording

Multi-view Aggregation

Unity-based Feature Extraction Module

Avatar Building 

Video Generation Extractor Pre-training

Feature Extraction

Identity Recognition

Fig. 4. System overflow.

Scenario-1: closed-world avatar setting. Before launching

the attack, the adversary collects the victim’s gait videos

(gallery) in which a set of several avatars are utilized. Then,

the victim hides her external information (e.g., nickname) and

changes her avatar into an avatar inside the gallery. For the

adversary, the goal is to identify the victim’s identity after

observing the new arriving gait video clip.

Scenario-2: open-world avatar setting. In this scenario,

the victim can hide her external information and utilize a

novel avatar outside the gallery in the closed-world setting.

Compared with scenario-1, it is harder for AvatarHunter to

infer the real-world identity since the pre-collected gallery

contains no prior knowledge about the victim’s gait behaviors

in this novel avatar. Note that, as described in Section III-A,

we assume the adversary can learn the details about the novel

avatar used by the victim after investigating the collected video

clips.

IV. THE DESIGN OF AVATARHUNTER

As shown in Fig. 4, AvatarHunter consists of four modules:

Attack Initialization Module, Data Prepossessing Module,

Unity-based Feature Extraction Module, and Identity Recog-
nition Module. In this section, we elaborate on each module’s

details.

A. Attack Initialization Module

In this module, AvatarHunter constructs a gallery before

launching the de-anonymization attack. Then, during the vic-

tim plays VR applications, AvatarHunter collects the video

clips imperceptibly.

1) Gallery Construction during Attack Preparation: As

described in Section III-A, constructing a gallery is essential

in de-anonymization attacks because without it, AvatarHunter

does not have prior knowledge of the target victim’s identity.

In this study, to build the gallery, a common method for the

adversary is to login into the VR application where the victims

stay and expose their identities to obtain the gait video clips

and identity labels. Finally, AvatarHunter collects a gallery

with several users containing the target victim before launch-

ing de-anonymization attacks. The i-th element of gallery Gi
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Fig. 5. An illustration of attack initialization module and data pre-processing
module.

can be denoted as a 3-tuple 〈VG,i, AG,i, IG,i〉, where VG,i is

the collected video clips, AG,i is the avatar employed in this

video, and IG,i is the gallery member’s identity.

2) Recording the Victim’s Video in the Virtual World: For

the targeted victim, after building the gallery, AvatarHunter

deploys cameras to collect her movement video clips in the

VR applications. As illustrated in Fig. 5, the victim enters

the VR application and hides her identity by making her

external information (e.g., nicknames, user profiles) anony-

mous and employing various avatars. AvatarHunter utilizes

NV accounts to login into the VR application to monitor

the victim’s behaviors with NV views following the manners

described in Section III-A and Fig. 2. Besides, to record

videos imperceptibly, AvatarHunter sets the appearances of

NV avatars as invisible. As shown in Fig. 5, the collected

videos contain NV views, which can be denoted as gait video
trial V = {V1, V2, · · · , VNV

}, where Vi represents the video

from the i-th invisible camera. Besides, Vi contains M = T×S
frames, where T is the recording duration time and S is the

frames per second.

B. Data Pre-processing Module

To improve the de-anonymization performance,

AvatarHunter pre-processes the collected video trial V
before sending it to the next module.

1) Background Elimination: For a given video trial V
with M × NV frames, to eliminate the distortion of the

VR application background on extracting movement signature,

AvatarHunter first eliminates the background of these frames

and only preserves the information related to the avatar move-

ment. First, for the video with a specific view, AvatarHunter

collects a background image BI in which the victim’s avatar

does not stay during the data collection step. Then, based on

the collected BI , for each frame in this video, AvatarHunter

applies the background matting scheme proposed by Lin et

al. [28] to obtain its corresponding silhouette. Finally, for

collected V , AvatarHunter gets a sequence of silhouettes S
with the dimension of M ×NV , and each element is:

si,j = BE(vi,j , BI), (1)

where vi,j is the i-th frame from the j-th view’s video Vj , si,j
is vi,j’s corresponding silhouette, and BE(·) is the background

elimination operation described in [28]. As shown in Fig. 5,
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(a) Feature visualization of bench-
mark feature extractor.
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(b) Feature visualization of Unity-
based feature extractor.

Fig. 6. Illustrations of the performance improvement when employing the
Unity-based feature extractor.

the victim avatar’s movement behaviors are obviously exposed

after conducting background elimination.

2) Multi-view Data Aggregation: As mentioned in Sec-

tion IV-A, AvatarHunter employs multiple cameras to collect

data with increased diversity to improve the de-anonymization

attack’s performance. Thus, AvatarHunter aggregates the data

from multi-view as the input for the next module.

Since multiple cameras have different locations, sight

views, and angles, AvatarHunter needs to address silhou-

ettes from different cameras uniformly. Given silhouette

si,j , AvatarHunter firstly calculates its centroid ci,j . Then,

AvatarHunter cuts the margins of si,j to obtain a new sil-

houette s′i,j in which ci,j locates in the center.

To demonstrate that utilizing multiple cameras can provide

more fine-grained information, for the i-th camera, we calcu-

late the GEI Gi from silhouettes {s′1,i, s′2,i, · · · , s′M,i} as:

Gi =
1

M

M∑
j=1

s′j,i. (2)

As shown in Fig. 5, deploying multiple cameras could pro-

vide diversified information reflected by the avatar movement.

For instance, when deploying NV = 4 cameras, from the

front perspective, we can observe the existence of the leg

movements, but only from the side perspective (i.e., GEIs

from the left and right cameras) can the amplitude of the leg

movements be marked clearly. Finally, for the collected video

trial V with the dimension of M ×NV , AvatarHunter utilizes

the pre-processed silhouettes S′ as the input of the feature

extraction module and S′ can be represented as:

S′ =

⎡
⎢⎢⎣

s′1,1, s
′
1,2, · · · , s′1,NV

s′2,1, s
′
2,2, · · · , s′2,NV

· · ·
s′M,1, s

′
M,2, · · · , s′M,NV

⎤
⎥⎥⎦ . (3)

C. Unity-based Feature Extraction Module

After pre-processing the collected video trial, AvatarHunter

needs to obtain the feature from the victim avatar’s gait

for final identity inference. Note that, to characterize the

gait feature, existing video-based gait feature extractors (e.g.,
GaitSet [17]) usually leverage deep learning models, which

are pre-trained using a public gait video dataset (CASIA-B

gait dataset [29]). However, the user’s gaits for pre-training
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Fig. 7. The pipeline of the Unity-based feature extraction module.

existing extractors (e.g., GaitSet) are collected in the physical

world (i.e., none of the avatars are employed, and appear-

ances of different real human volunteers vary broadly) rather

than virtual world. Thus, when applying the existing feature

extractor on the input S′, the extracted biometric signature

contains both appearance and movement signatures in which

the former is unstable when changing avatars. Fig. 6(a) visual-

izes the features extracted by GaitSet, the benchmark feature

extractor in this study when three volunteers employ three

different avatars. Note that features are projected into 2D space

using the t-Distributed Stochastic Neighbor Embedding (t-

SNE) method [30]. It is observed that features extracted by the

benchmark extractor are clustered depending on the avatars’

appearances rather than volunteers’ movement signatures.

To handle the challenges incurred by the avatar’s changeable

appearances, as shown in Fig. 7, during the feature extractor’s

pre-training procedure, instead of using the public gait dataset

collected in physical worlds, we employ the gait dataset in the

virtual world built by ourselves. In our VR gait dataset, various

avatars are designed and driven by the user’s movement data in

the Unity platform following steps described in Section II-C.

Therefore, the retrained scheme could focus on the identity

behind the avatar since it has prior knowledge about the user’s

movement signature under various avatar appearances. The

detailed steps are shown below.

1) Avatar Construction in Unity Platform: In Unity plat-

form, AvatarHunter constructs NA avatars occurring in the

gallery, which are denoted as A = {a1, a2, · · · , aNA
}. For

i-th target avatar ai, if it is open-source, we can directly

import its source file (e.g., .FBX file) into the Unity platform.

Otherwise, we utilize a popular 3D character making tool,

MakeHuman [31], to design the closed-source avatar ai in

Unity.

2) Gait Video Clips Generation: To activate the avatar’s

movement in Unity, we utilize Blender [32] to map the sensor

data collected during the human’s walking into the avatar’s

skeleton movement. The sensor data in this study are selected

from a third-party CMU-CoMap dataset [33], which utilizes

41 contacted sensors to track the participant during movement.

Since AvatarHunter is based on the victim’s gait information,

we only select sensor data of NM = 136 walking samples

involving 29 participants conducting walking behaviors from

CMU-CoMap. These NM motion data samples are denoted

as M = {m1,m2, · · · ,mNM
}. Besides, we revise the avatars’

skeleton in Unity to conform with the sensor data. To record

the video clips from multiple views, we deploy eight cameras

and the angles between avatar and cameras are set as 0◦, 72◦,

90◦, 144◦, 180◦, 216◦, 270◦, and 288◦ respectively. Finally,

after applying the NM sensor data on NA avatars in the gallery,

we totally generate the NM ×NA eight-view videos Ppre as

below:

Ppre = Φ(A,M) =

⎡
⎢⎢⎣

P1,1, P1,2, · · · , P1,NA

P2,1, P2,2, · · · , P2,NA

· · ·
PNM ,1, PNM ,2, · · · , PNM ,NA

⎤
⎥⎥⎦ , (4)

where Pi,j is the video with eight views when applying i-th
motion mi data on j-th avatar aj .

3) Feature Extractor Pre-training: We regard the generated

NM ×NA eight-view videos as the pre-training dataset. Note

that, each video in the dataset lasts for several minutes, which

is far greater than that in the gallery (e.g., usually several

seconds). We divide the pre-training dataset into training and

validation components following the ratio of 9:1. During

the pre-training, the video clips will be transformed into

silhouettes as described in Section IV-B and we set the model

structure of the feature extractor as the same with GaitSet.

Note that, the feature extractor of AvatarHunter can receive the

silhouette with arbitrary camera views and output the feature

with a uniform dimension.
4) Extracting Feature from Inputting: For a given collected

gait video trial V and its pre-processed silhouettes S′, if the

avatar in V exists in the gallery (i.e., closed-world avatar

setting), AvatarHunter takes S′ as input and obtains feature

F . Otherwise, in the open-world avatar setting, we add the

novel avatar a′ in the Unity platform and repeat the above-

mentioned three steps. The updated pre-training dataset can

be represented as:

P ′
pre = Φ(A ∪ a′,M). (5)

Finally, AvatarHunter obtains feature F from the updated

feature extractor pre-trained by P ′
pre.

Fig. 6(b) illustrates the features generated by our Unity-

based feature extractor. Compared with the benchmark feature

extractor (i.e., GaitSet) as shown in Fig. 6(a), AvatarHunter is

robust to the avatar appearance changes and characterizes the

user’s inherent movement signature.

D. Identity Inference.
Finally, after obtaining the feature F from the target

user, which characterizes the inherent movement signature

AvatarHunter generates a classifier Ψ based on the gallery G.

Then, it determines the identity of F .
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Fig. 8. Evaluation setup.

1) Gallery-based Classifier Generation: For the gallery G
contains Nu users’ identities, we denote the i-th element

Gi = 〈VG,i, AG,i, IG,i〉, where VG,i is video clip, AG,i ∈
{a1, a2, · · · , aNA

} is avatar, and IG,i ∈ {u1, u2, · · · , uNU
} is

the identity. To build the classifier, AvatarHunter transforms

G into G′, in which the i-th element Gi is represented as:

G′
i = H(Gi) = 〈E(VG,i), IG,i〉, (6)

where H(·) is the transform operation and E(·) is the feature

extraction function defined in Section IV-C. After that, we

leverage a random forest in which G′ is the input to generate

the classifier Ψ.

2) Identity Recognition: Finally, for the F extracted from

V , AvatarHunter utilizes Ψ to determine its identity J as

below:

Ψ(F ) = J, (7)

where J ∈ {u1, u2, · · · , uNU
}. If J is the victim’s real

identity, AvatarHunter conducts the de-anonymization attack

successfully.

V. EVALUATION

A. Evaluation Setup

Experimental conditions. In this study, we evaluate the

de-anonymization performance of AvatarHunter in VRChat, a

popular VR application that is developed for real-time social

interactions. 10 volunteers are recruited for the experiments.

As shown in Fig. 8(a), each volunteer is required to wear the

Oculus Quest 2 device and then enter VRChat. To launch the

attack, when the volunteer walks in the virtual environment,

four cameras are deployed in the front, left, right, and behind

the volunteer to record the video simultaneously. Fig. 8(b)

illustrates frames from four sight views at a given time. During

the data collection period, each volunteer is asked to employ

10 avatars as shown in Fig. 8(c) and walks 10 times when

employing each avatar.
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Fig. 9. Performance on closed-world avatar setting.

Dataset Description and Metric. We totally obtain 10 users

×10 avatars ×10 trials = 1000 gait video trials in which each

trial contains 4 videos with different views. For each view,

the video lasts at least 4.5 seconds with 30 frames per second.

During the evaluation, for each avatar used by each volunteer,

we randomly choose 3 trials as gallery and regard rest the other

7 trials as AvatarHunter’s testing dataset. Thus the gallery

and testing dataset have 300 and 700 trials respectively. In

the experiments, we choose attack success rate (ASR) as the

evaluation metric, which is defined as NS

NT
, where NT is the

total attack times and NS is the times when AvatarHunter

successfully reveals the victim’s identity.

B. Overall Performance of AvatarHunter

In this subsection, we introduce AvatarHunter’s performance

under closed-world and open-world avatar settings.

1) Performance under Closed-world Avatar Setting: In this

scenario, all avatars existing in the testing dataset are covered

by the gallery. To evaluate AvatarHunter’s performance, we

train the classifier based on the gallery containing 300 tri-

als and conduct identity inference using the testing dataset

containing 700 trials. For a given trial containing four views,

30 frames (i.e., 1 second) from each view are chosen as the

input of AvatarHunter. Fig. 9(a) illustrates the ASR among

volunteers. It is observed that the overall ASR is 92.1%, and

ASRs among different volunteers vary from 77.1% at user #5

to 100.0% at user #2 and user #3. Even in the worst case,

the ASR is far larger than the random guess (i.e., 10% in this

experiment setting). From the aspects of avatar, it is observed

from Fig. 10(b) that AvatarHunter’s performance varies when

choosing different avatars. ASRs among different avatars vary

from 85.7% to 100%. In the worst case, the ASR is still

far larger than the random guess. Therefore, it proves the

effectiveness of AvatarHunter in de-anonymizing the user’s

identity in VR scenarios.

2) Performance under Open-world Avatar Setting: In the

open-world setting, the victim’s avatar does not exist in the

gallery. Therefore, for each avatar, we exclude its correspond-

ing 30 trials in the gallery and train AvatarHunter’s classifier

based on the updated gallery. Then, we apply the classifier to

the remaining 70 trials of this avatar. AvatarHunter achieves

an overall ASR of 66.9%. The performance is worse than that

in the closed-world setting because the gallery lacks any prior

knowledge about the avatar employed by the victim.

We also compare AvatarHunter with an existing popular

gait-based identity inference scheme (i.e., GaitSet [17]). As

shown in Fig. 10(a), among 10 employed users, AvatarHunter
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(b) AvatarHunter’s confusion matrix.
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Fig. 10. Performance on open-world avatar setting.

TABLE I
INFERENCE SUCCESS RATE OF AVATARHUNTER

Frame length 10 20 30 60 90
ASR in scenario-1 (%) 87.0 91.6 92.1 93.0 93.4
ASR in scenario-2 (%) 63.6 65.3 66.9 65.9 65.0

achieves the best ASR of 90.0% in user #3 and the worst ASR

of 32.9% in user #5. Meanwhile, the best and worst ASRs of

the benchmark attack are 64.3% in user #1 and 0.0% in user #9

respectively. Furthermore, Fig. 10(b) and Fig. 10(c) show the

confusion matrix between AvatarHunter and the benchmark

attack. It is observed that compared with the benchmark, for

AvatarHunter, most darker areas locate at the diagonal of

the matrix. AvatarHunter achieves better performance because

its feature extractor is pre-trained by various avatars’ videos

generated in Unity platform, which improves its robustness to

appearance changes. The results successfully demonstrate the

superiority of our proposed Unity-based feature extractor in

improving de-anonymization performance.

3) Time overhead: The time overhead consists of three

components: feature extractor pre-training time, classifier

training time, and real-time inference time. For a server with 2

GPUs (GeForece RTX 2080 Ti), Ubuntu 18.04.6 LTS OS, Intel

Xeon E5-2678 v3 CPU, and 128 GB RAM, the time overheads

of three components are 8.05 hours, 2.3 seconds, and 123.5

ms respectively. Note that, since the training procedures can

be done ahead of the attack, the real-time inference time of

123.5 ms is acceptable in real-world scenarios.

C. Impact of Various Factors on AvatarHunter

1) Length of Recording Video: In Section V-B, for each

view of a given trial, 30 frames (i.e., 1 second) are chosen as

the input of AvatarHunter. We evaluate the impact of the frame

length on AvatarHunter’s performance. As listed in TABLE I,

we set the frame length of each view as 10, 20, 30, 60, and

90, respectively. It is observed that when increasing frame

TABLE II
PERFORMANCE WHEN CHANGING THE GALLERY SIZE

Gallery size 10% 30% 50% 70% 90%
ASR in scenario-1 (%) 78.8 92.1 94.6 94.0 98.0
ASR in scenario-2 (%) 63.0 66.9 64.0 62.7 66.0

TABLE III
PERFORMANCE WHEN CHANGING CAMERA COMBINATION

Camera combination F FB FR FRL FBRL
ASR in scenario-1 (%) 72.9 90.1 91.9 88.4 92.1
ASR in scenario-2 (%) 51.3 62.3 68.6 66.4 66.9

length, the ASRs on both open-world and closed-world avatar

settings increase slightly. Especially, even with 10 frames

(0.33 seconds), the ASRs at the closed-world and open-world

scenarios are higher than 87% and 63% respectively, which

is far larger than the random guess (i.e., ASR of 10%). The

experimental results show that AvatarHunter works well even

when the collected video has a small length.

2) Gallery Size: In this study, the gallery serves as the

role of “training dataset” of the classifier. It is well known

that the abundance of “training samples” would cause a great

influence on the final inference performance. We evaluate the

impact of gallery size by adjusting the proportion of trials

in the gallery. The results are listed in Table II. It is observed

that the ASR increases from 78.8% to 98.0% when the gallery

proportion increases from 10% to 90%. Note that, After the

gallery proportion exceeds 30%, the performance has limited

improvement when increasing gallery size. When selecting

gallery proportion as 30%, since each trial contain the victim’s

behaviors for only 1 second, building a gallery containing 30

trials from each victim is easy to achieve. Thus, AvatarHunter

causes a light burden for the adversary.

3) The Number of Cameras: As mentioned in Section IV-B,

to improve the de-anonymization performance, AvatarHunter

deploys four cameras which are in the front (F), left (L),

right(R), and behind (B) of the victim respectively. We eval-

uate the robustness of AvatarHunter when choosing different

camera combinations. As listed in Table III, when increasing

the number of cameras, the ASR will increase in the open-

world avatar setting. Besides, different angles also cause

different ASRs. For instance, the performance when using

front and behind cameras (FB) is less than that of front and

right cameras (FR). However, even utilizing only one camera,

it is possible for AvatarHunter to achieve effective performance

(i.e., ASR of 72.9% in the closed-avatar setting when utilizing

only the front camera). In summary, utilizing multiple cameras

improves the performance of AvatarHunter, and AvatarHunter

is still robust in the single-camera scenario.

VI. DISCUSSIONS

A. Countermeasures

1) Detecting Suspicious Users in VR: For AvatarHunter,

recording the victim avatar’s behaviors is essential during the

attack phase. Thus, we can detect suspicious users who focus

their insights on a fixed user or choose an avatar with a void
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appearance. By excluding these suspicious users, it can reduce

the victim’s possibility of privacy leakage.

2) Adding Noises when Mapping Sensor Data to Avatar’s
Movements: As described in Section II-C, the movement of

the avatar is driven by the data collected by the sensor of

VR devices. Therefore, by intentionally adding noises into

sensor data during the avatar movement generation process,

it is feasible to cause AvatarHunter to extract no meaningful

information about the target victim’s movement signature.

3) Restricted Access Control: One of the most straight-

forward solutions is enhancing the access control of the

VR application. For the user who requires high demands of

anonymity, they can only share their VR scenarios with the

users they trust. However, this countermeasure only works

when users can control their VR applications (e.g., the user is

the administrator of the chatting room of VRChat).

B. Limitations and Future Works

To apply AvatarHunter to more broad VR scenarios, the

following limitations need to be addressed.

1) Enlarging Dataset Including Avatars with Non-
humanoid Appearance and More Users: In this study, only

humanoid avatars as shown in Fig. 8(a) are studied. However,

for the avatars with the appearance of non-humanoid

appearance, since their skeletons are different from that of

humans, it is hard for the feature extractor to extract human

movement signatures. Involving the animal-like avatars into

the Unity-based feature extraction module, or proposing more

advanced techniques are potential solutions and we leave

them for future works.

2) Victims not in Gallery: Acquiring prior knowledge about

the target user is an essential prerequisite for user recognition

or authentication schemes. In this study, AvatarHunter builds

a gallery to store the victim’s avatar gait information in VR

scenarios. For users who are failed to extract their gaits in VR,

extracting the features from their gaits in the physical world

is a potential solution and we will study it in the future.

3) Other Action Types: In this study, we only collect the

videos about the victim’s walking behaviors and extract the

gait-based features. Although gait is one of the most popular

features used by existing user identification schemes, there

are other actions (e.g., running, throwing) users can conduct

in VR scenarios. Building a de-anonymization attack based on

universal actions is a promising future research direction.

4) Other VR Device Types: For other VR device types such

as HTC Vive Pro 2 and Valve Index, AvatarHunter should also

work since they have the same working principles as Quest

used in our evaluation. Besides, by incorporating advanced

full-body tracking and hand gesture tracking sensors into VR

devices, AvatarHunter is expected to achieve more effective

performance, which will be studied in the future.

VII. RELATED WORK

Sensor-based user recognition. There are a bunch of works

about using sensor data to conduct user recognition, which

can be applied to designing secure and efficient authentication

schemes in VR scenarios [34], [6], [35], [36], [37], [38],

[39]. OcuLock [6] and GaitLock [35] leverage users’ eye globe

movement triggered by immersive 3D visual content and gait

signature recorded by onboard IMUs to recognize login users

respectively. Other interactions like pointing, grabbing, typing

with controllers, bowling, and shooting arrows [12], [40], [41]

can also be utilized to build authentication schemes. However,

these user recognition schemes highly depend on accurate sen-

sor data extracted from built-in sensors in VR devices, which

limits their implementations in remote attacking scenarios.

Video-based user recognition. The research community

also looked into the computer-vision-based user recognition

task using the videos of users walking in different scenarios

like lab-setting[29], market[42] and, university campus[43].

[15], [16], [17] achieve great performance on these specific

tasks. However, as analyzed in Section IV-C, these videos

(image sequences) are captured in the physical world and thus

contain both the appearance and movement signature of users,

which will make it challenging to put them into use in VR

scenarios, especially when users can change their appearance

by putting on different avatars. ReAvatar [26] leverages videos

in VR to perform user recognition. However, it requires the

adversary to lure the user to explicitly conduct actions, which

easily incurs the user’s suspicion and limits its practicability.

Other privacy breaches in VR. Recent studies point out

that privacy information including text inputs, locations, and

speeches can be revealed by attacks. Arafat et al. [44] leverage

the channel state information (CSI) existing in the VR device’s

wireless communication to track the user’s gesture and infer

the text input. Kotaru et al. [45] also utilize CSI to track the

user’s location in the VR scenario. Shi et al. [9] utilize the

vibration data collected by sensors in the VR device to infer

the user’s speeches. However, these methods either require

intruding on the target victim’s network or injecting malicious

applications.

VIII. CONCLUSION

In this study, we have proposed AvatarHunter, a non-

intrusive and user-unconscious de-anonymization attack in

the VR scenario. AvatarHunter imperceptibly collects victim’s

gait videos in VR applications and leverages a Unity-based

feature extractor to characterize the victim’s movement sig-

nature which is immune to avatar appearance changes. We

deploy AvatarHunter in a real-world VR application and the

experimental results show that AvatarHunter can effectively

reveal the identity behind the employed avatar in both closed-

world and open-world avatar settings. AvatarHunter reveals

a severe privacy threat for the stakeholders of VR-related

areas, which is expected to inspire studies of countermeasures

defending against it in the future.
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