
Thwarting Longitudinal Location Exposure Attacks
in Advertising Ecosystem via Edge Computing

Le Yu∗‡, Shufan Zhang†‡, Lu Zhou∗, Yan Meng∗, Suguo Du∗, Haojin Zhu∗§
∗Shanghai Jiao Tong University, †University of Waterloo

∗{yule5100309221, zl19920928, yan meng, sgdu, zhu-hj}@sjtu.edu.cn, †shufan.zhang@uwaterloo.ca

Abstract—As geo-location data has been increasingly adopted
as a high-profile feature in targeted advertising, exposing user
real locations to untrusted cloud services or advertisers has raised
severe privacy concerns. To protect location privacy with formal
guarantee, a wide-stretched line of recent studies focuses on
injecting controlled geo-indistinguishability (geo-IND) noise as
per each location exposure. However, in advertising, over the
course of 2 years, a single user can report and contribute near
1k location data points on average, which allows a longitudinal
attacker to infer some statistics from the perturbed locations.

In this study, we demonstrate the above-mentioned privacy
risk via revealing an inference attack mechanism, coined as a
longitudinal location exposure attack. This novel attack illustrates
the possibility of recovering 75%∼90% of user top-1 locations
(within only 200-meter range) among 37k users. In light of this
deficiency, we propose a novel edge-assisted location privacy
protection system, entitled Edge-PrivLocAd, that is adapted to
location-based advertising. The novelty of Edge-PrivLocAd stems
from our 𝑛-fold Gaussian mechanism, which adds permanent
noise to the statistical user location profile and thus can defend
against longitudinal attackers while balancing the privacy-utility
trade-off. In addition, our system incorporates a posterior-based
sampling technique into the location re-mapping process, that
boosts location utility without privacy loss. We develop a fully-
functioning prototype and empirically evaluate the proposed
system. Our experimental results show that Edge-PrivLocAd is
practical and scalable in real-world scenarios.

I. INTRODUCTION

Location-based advertising (LBA) [1], [2] represents an

emerging advertising technique to target mobile users, lever-

aging location information to decide whom to deliver ads

based on where they are. Through LBA, digital marketers are

benefited from a higher return on investment (ROI) since they

can significantly improve the relevance of their targeted users.

As Global Industry Analysts reports [3], the LBA market in

the U.S. is estimated at $22.8 Billion in the year 2021, and

China is forecast to reach $16.1 Billion by 2026, while the

global market may reach $133 Billion by then.

Despite its advantages, this new paradigm of ads delivery

raises severe privacy concerns among mobile users. In current

LBA systems, users’ real-time locations can be easily collected

by ad service providers [2], which may be abused by them

to further infer the location semantics (e.g., home and work

place), mobility patterns, and even habits, interests, activities,

and relationships of users. With the development of privacy

protection laws such as GDPR and CCPA, users pay more

‡ co-first authors.
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attention to their location privacy. This motivates the industry

to take more actions on protecting the users’ privacy. For

example, Apple introduces a new privacy control feature,

APP Tracking Transparency, starting from iOS 14.5, which

allows the users to block third-party apps and advertisers from

tracking their online behaviour (e.g., their locations). However,

it is reported that this feature has been bypassed by the big tech

companies like Google, Meta (erstwhile Facebook), and Snap

due to its challenge to the current ad ecosystem. Therefore, it

is more desirable to have a user-controllable privacy-enhancing

technique that is compatible with the existing LBA ecosystem.

Location privacy has been extensively investigated over the

past decade. Numerous location privacy-preserving mecha-

nisms (LPPMs) [4]–[13] have been proposed, many of which

are built upon the well-known differential privacy (DP) to pro-

vide formal and rigorous guarantee on user location privacy.

One mechanism, entitled geo-indistinguishability (or geo-IND)

[9], has inspired a line of follow-up works applying geo-IND

in different location service scenarios [10]–[12]. However,

in this study, we will reveal that there still exists a huge

gap between the theoretical privacy guarantee and real-world

privacy issues in LBA.

More specifically, we identify a new type of attack –

the longitudinal attack, aiming to infer the target user’s top
locations from his reported and obfuscated locations through

long-term observation or tracking. This attack is realistic

in the current ad ecosystem since any advertisers or third-

party traffic verification companies can observe the location

updating from the billions of ad bidding logs per day [14].

Based on the frequency of a location being reported to the ad

network, the locations can be classified into two categories:

nomadic location, and top location. The nomadic locations

refer to the locations that a user rarely visits, the protection of

which can be achieved by leveraging geo-IND. Different from

nomadic locations, top locations are referred to as the user’s

most sensitive locations (home, work place, etc.), which are

routinely reported and are of great value for advertising.

The protection of top locations represents a new chal-

lenge for geo-IND based location privacy protection mecha-

nisms [10]–[12]. This is because the existing geo-IND mecha-

nisms are based on a common assumption that every reported

location is independent, which holds for nomadic locations

but not for the top locations. According to the composi-

tion theorem in differential privacy [15], exposing multiple

obfuscations of the same location will degrade the overall
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privacy protection, which makes the protection of top locations

quite different from the differential privacy perspectives. A

longitudinal attacker (e.g., ad service provider or any third

party observer) can thus exploit this fact to recover the real

top locations once it obtains sufficient obfuscated locations.

We conduct a simple but effective experiment, using 37,262

real-world LBA users’ data, to illustrate that an attacker of

this kind can reconstruct 80%∼93% of users’ top-1 locations

and over 50% top-2 locations. Our attack well demonstrates

the severity of this long-term exposure threat.

To defend against the longitudinal attacker, a naı̈ve solution

is to first add permanent geo-IND noise and then always report

the same obfuscated location. However, the permanent noise

will lead to an unacceptable degradation of utility since the

location data in this solution suffer from permanent utility loss
for every usage of user location. In LBA, an advertiser may

permanently lose its potential user if this obfuscated location

drops outside the targeting area and is never being updated.

One mitigating factor, outputting multiple obfuscated locations

instead of one, also has the drawback of the degradation of

the overall privacy guarantee. Therefore, how to improve the

probability of a user being targeted without compromising the

privacy guarantee, especially under the longitudinal attack, still

remains a big challenge, which also motivates this work.

In this paper, we propose an edge-assisted, utility-aware
system, entitled Edge-PrivLocAd, which dedicates to pro-

vide privacy-preserving location data management for LBA.

The novelty of the Edge-PrivLocAd system stems from the

incorporation of edge devices for user location management

and a new 𝑛-fold Gaussian mechanism to boost the LBA

utility with non-degradable privacy guarantee. The trusted

edge devices work as a firewall layer between mobile users

and malicious service providers. We use edge devices to assess

the risk of location privacy breaches, create user dynamic

location statistics, and adopt the appropriate LPPM to protect

user location privacy. The novel 𝑛-fold Gaussian mechanism

can be regarded as a non-trivial extension to existing geo-

IND mechanisms. In this mechanism, we solve the analytic

challenge by introducing sufficient statistics, which provides

tighter error bounds on noise composition when generating

multiple obfuscated locations at the same time. In addition, we

design a re-sampling based post-processing module to boost

the utility of the output locations without privacy loss. Putting

all the modules altogether, we show through formal proofs

and experimental results that the Edge-PrivLocAd system is

able to achieve the long-term privacy, location utility, and

performance requirements.

Contributions. The main technical contributions of this paper

are highlighted as follows.

• New Attack. We identify a novel attack, the longitudinal

attack, to reveal a new location privacy threat that cannot

be addressed by the existing geo-IND-based approaches.

The attack is validated by using 37, 262 mobile users’

real-world data from the ad network.

• New Mechanism. We propose a novel 𝑛-fold Gaussian
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Fig. 1: The business model and data flow of LBA.

mechanism to defend against the longitudinal attacker and

boost the utility under non-degradable privacy guarantee,

which is achieved with the aid of the sufficient statistics

and a re-sampling based post-processing module.

• New System. We design Edge-PrivLocAd, a full-stack

edge-assisted system dedicated to providing privacy-

preserving location management for LBA and reducing

the computing costs of users’ devices. We develop and

implement a fully-functioning prototype of our system.1

We conduct extensive analytical experiments, on a real-

world advertising dataset, to well demonstrate the effec-

tiveness and the efficiency of the proposed system.

Roadmap. The remainder of this paper is organized as fol-

lows. In Section II, we introduce the preliminaries of this

work. In Section III, we present the longitudinal location

exposure attack faced by the geo-IND based schemes. Then,

we elaborate on the design motivation of Edge-PrivLocAd

in Section IV, which is followed by detailed design, privacy

analysis, evaluation, and related work in Section V, VI and

VII resp. Finally, we conclude this paper in Section IX.

II. BACKGROUND

In this section, we first introduce the business model of

LBA, as well as how advertisers can target their ads to

geographic locations in real-world LBA platforms. Then we

introduce geo-IND, a formal definition widely discussed to

address the location privacy issues in location-based services.

A. Location-Based Advertising: Paradigm, Business Model,
and Data Flow

As depicted in Fig. 1, we abstract and summarize the typical

business model of current location-based advertising (LBA).

The model includes three typical categories of participants:

the mobile clients (a.k.a. users) who are served mobile ads on

their mobile devices; the ad networks who match and distribute

ads to mobile clients according to advertiser requirements

and user attributes; and the advertisers (a.k.a. vendors or

businesses) who want to promote their businesses to their

potential customers.

Fig. 1 also illustrates more details about the work flow of

LBA. To set up a location-based advertising campaign, the

advertiser needs to pinpoint her business location and specify

1The source code is available at GitHub.
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TABLE I: Targeting Range on Top Players’ LBA Platforms

Companies Minimal Radius Maximal Radius
Google 5 km 65 km

Microsoft 1 mile / 1 km 800 miles / 800 km

Facebook 1 mile 50 miles

Tencent 500 m 25 km

a range to define the targeting area. When a user triggers an ad

request, her present location will be sent to the ad network.

The ad network then informs the advertiser to bid on the ad

request whose targeting location matches the user. Once the

matching is completed within a given time limit (e.g., 100 ms

in [16]), this kind of personalized ads will be sent to the user

device and displayed on the banner or in a pop-up manner.

Categories of location targeting. We investigate some top

players’ LBA platforms and most of them provide the follow-

ing three categories of geo-targeting methods:

• Countries Targeting. Advertisers target their advertise-

ments to a country or countries.

• Areas Targeting. The advertiser targets their advertise-

ments to areas in a country, usually specified by cities or

administrative areas.

• Radius Targeting. The advertiser submits a business

location and a radius to show their advertisements to the

customers within the radius from the business location.

For instance, Google Ads platform [17] allows advertisers

to target up to 1000 location concurrently, each of which

is specified by a different center with different radius.

In this work, we focus on the radius targeting, which is

widely adopted by most LBA platforms and is most privacy

sensitive among the three categories of geo-targeting. In radius

targeting, the user has to provide her precise location to the

LBA service provider, and the service provider matches with

the advertiser if their distance is within a predefined radius.

The allowed targeting range differs according to different

LBA platforms. We investigate LBA platforms of four famous

companies and summarize the radius range as shown in

Table I. It shows that the minimum radii range from 500 m to

5 km while the maximum radii range from 25 km to 65 km

among these platforms.

B. Privacy Notion: Geo-indistinguishability

To resist potential threats to users’ location privacy in

the LBA services, a geo-indistinguishability (geo-IND) [9]

based location obfuscation mechanism can be applied to the

system to provide a formal and rigorous location privacy

guarantee. Geo-IND is an extension to the well-known concept

of differential privacy. The idea of geo-IND is to enforce

similar distribution between the obfuscation of any two real

locations whose distance is within 𝑟, so that they can not

be distinguished by any informed adversaries observing the

obfuscated location. Specifically, a user can customize her

privacy requirements by a tuple (𝑙, 𝑟), where 𝑟 is the radius

she is mostly concerned with and 𝑙 is the privacy level. This

requirement can be achieved through 𝜀-geo-IND for 𝜀 = 𝑙/𝑟.

Top-1 Location
Top-2 Location

Fig. 2: A user’s 7-day mobility pattern.

Definition 1 (𝜀-geo-IND [9]). For all locations 𝒑0, 𝒑1, let
𝑑 ( 𝒑0, 𝒑1) be their distance, a privacy mechanismM satisfies
𝜀-geo-indistinguishability if for all output location 𝒒:

𝑃𝑟 [M( 𝒑0) = 𝒒] ≤ 𝑒𝜀𝑑 (𝒑0 ,𝒑1)𝑃𝑟 [M( 𝒑1) = 𝒒] (1)

Geo-IND is widely discussed in location-based services

and spatial crowdsourcing. In location-based services, LP-

Guarding [10], LP-Doctor [11] and Top-K Geo-Query system

[12] are proposed to provide obfuscated locations for point

of interest (POI) queries. In spatial crowdsourcing, previous

works [18], [19] propose a geo-IND based mechanism to

obfuscate users’ real-time location. However, none of these

works have been aware that the users’ mobility patterns are

repeated day by day, and under one-time geo-IND mechanism,

privacy levels will decrease along with the increase of the

number of observations according to the composition theorem.

In this study, we reveal that the user’s location privacy is vul-

nerable under the longitudinal observation (i.e., longitudinal
location exposure attack in the following section) from the

attacker.

III. LONGITUDINAL LOCATION EXPOSURE ATTACK

The emergence of LBA raises severe threats to users’

location privacy. Although traditional geo-IND based solutions

obfuscate the location information provided by users, in this

section, by proposing the longitudinal location exposure at-
tack, we reveal the location privacy caveat of LBA in the wild.

A. Attack Model and Goal

For an LBA system which deploys geo-IND based location

privacy-preserving mechanisms, we consider a longitudinal

attacker who can track the victim’s real-time locations from

ad networks. We argue this is possible in current ecosystem,

since advertisers or ad-networks usually require user’s IDs

(e.g., android ID in Android OS and IDFA in IOS). The

longitudinal attacker’s goal is to build the victim’s location

profile to compute top locations and reveal mobility patterns.

Fig. 2 depicts a concrete example in the longitudinal loca-

tion exposure attack, where a victim’s 7-day traces with 2,414

raw spatiotemporal data are presented. In this study, we refer

the raw spatiotemporal data as the term check-in. It is observed

from Fig. 2 that the user’s top locations as well as the location

semantics (e.g., home and office) and the mobility patterns are

not difficult to infer from the illustration.

B. Procedures of Longitudinal Location Exposure Attack

The proposed longitudinal location exposure attack consists

of the following two steps.

472

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 30,2023 at 06:24:08 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Location entropy will decrease

with the number of check-ins.

Raw Check-in Perturbed Check-in Inferred Top Location Real Top Location

(a) One-week Data (b) One-month Data (c) Full Year Data

Fig. 4: An illustration of de-obfuscation attack.

1) Location Profiling Attack: With the spatiotemporal data,

the attacker can build the victim’s location profile and compute

the top locations accurately. First, for a given user, we define

her location profile P as a set of location and frequency tuples:

P = {(𝑙1, 𝑓1), . . . , (𝑙𝑀 , 𝑓𝑀 )} (2)

where 𝑀 is the number of locations and 𝑓𝑖 is the frequency

of the 𝑖-th location 𝑙𝑖 . In this attack, we want to reconstruct

user location profile from the check-ins, wherein the key

challenge is that the user check-ins are ad hoc and cannot

be directly used as real locations. We observe that users move

around the locations and the check-ins are distributed in a

certain range around every location. Thus, we use a clustering-

based method to aggregate check-ins that are inferred to

belong to the same location and estimate the frequency to

build the profile. In particular, we propose a connectivity-

based clustering algorithm, where we say two check-ins are

connected if their Euclidean distance is within a predefined

threshold (50 m in our experiment). We calculate the centroid

as the location coordinate and the size of each cluster as the

frequency, and build up the profile by repeating this process.

One interesting evidence, to measure whether a user’s mo-

bility pattern is stable, is the location entropy metric. Formally,

the location entropy is defined as

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
𝑀∑
𝑖=1

𝑓𝑖
𝑠𝑢𝑚

log
𝑠𝑢𝑚

𝑓𝑖
(3)

where 𝑠𝑢𝑚 represents the total number of check-ins and 𝑓𝑖 is

the frequency of the 𝑖-th location. Leveraging user’s location

profile, we can compute the location entropy of each user.

Fig. 3 illustrates the location entropy of 37,262 mobile users

from the dataset described in Section VII. It is observed that

the users’ location entropy declines with the increase of the

number of check-ins. Furthermore, there are 88.8% of users

whose location entropy is less than 2, which means in our

dataset, most users’ daily activities are refrained to their top
locations.

2) De-obfuscation Attack under One-time Geo-IND: Loca-

tion obfuscation is widely adopted with the geo-IND notion [9]

to provide a rigorous guarantee to user location privacy.

However, existing geo-IND applications [10]–[12], [18], [19]

Algorithm 1 Top-𝑛 Location De-obfuscation Attack

Input: User’s obfuscated check-ins 𝑥 = {𝑥1, 𝑥2, · · · , 𝑥𝑛};
Distance threshold 𝜃; Cluster radius 𝑟𝛼;

Output: Top-𝑛 locations;

1: procedure INFERENCE(𝑥)

2: 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥𝑖 , 𝑥 𝑗 ) � 𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗 ) < 𝜃
3: for 𝑖 ∈ [1, 𝑛] do
4: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠← Cluster 𝑥 based on connectivity

5: 𝐶 ← The largest cluster in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
6: TRIMMING(𝐶)

7: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← The centroid of 𝐶
8: 𝑥 ← 𝑥 − 𝐶 ⊲ Remove the clustered points

9: yield Top-𝑖 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

10: procedure TRIMMING(𝐶: the input cluster)

11: repeat
12: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← The centroid of 𝐶
13: for each 𝑝𝑜𝑖𝑛𝑡 ∈ 𝐶 do
14: if 𝑑𝑖𝑠𝑡 (𝑝𝑜𝑖𝑛𝑡, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) > 𝑟𝛼 then
15: Remove 𝑝𝑜𝑖𝑛𝑡 from 𝐶

16: for each 𝑝𝑜𝑖𝑛𝑡 ∈ 𝑥 do
17: if 𝑑𝑖𝑠𝑡 (𝑝𝑜𝑖𝑛𝑡, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) < 𝑟𝛼 then
18: Add 𝑝𝑜𝑖𝑛𝑡 to 𝐶

19: until No more points to update

only consider one-time obfuscation. To stress the difference,

we name the original geo-IND as one-time geo-IND and show

that one-time geo-IND mechanisms are prone to attacks under

the longitudinal attacker assumption in our scenario.

The attack is set up as follows. In the one-time geo-IND

obfuscation mechanism, we add independent noises to every

check-ins to mimic the scenario where obfuscated locations are

used in LBA services. We adopt the planar Laplace mechanism

and set the privacy parameters consistent with the original geo-

IND paper [9]. We propose our de-obfuscation algorithm as

described in Algorithm 1 to infer the top locations. Note that

obfuscated check-ins from different locations may not be sep-

arable. To tackle this challenge, our algorithm combines two

stages to use clustering and trimming methods respectively.

In the first stage, we use the described connectivity-based

clustering method (Alg. 1: 2) to find the largest clusters. If two
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check-ins are connected, we merge them into the same cluster

(Alg. 1: 4-5). In the second stage, we use a trimming method

to optimize the cluster (Alg. 1: 6). Specifically, we first define

the radius 𝑟𝛼 of the cluster. For each step, we discard those

check-ins whose distances from the centroid are larger than

𝑟𝛼 and update the centroid (Alg. 1: 12-15). Then we join new

points into the cluster. We update the cluster until no locations

should be discarded or added to the cluster (Alg. 1: 16-18).

To define 𝑟𝛼, we consider a confidence level 𝛼 where

Pr[𝑑𝑖𝑠𝑡 ( 𝒑, 𝒒) > 𝑟𝛼] ≤ 𝛼 (4)

which means the obfuscated check-in whose distance is larger

than 𝑟𝛼 is almost impossible and should be discarded. We use

𝑟0.05 as our cluster radius. When we compute a previous top

location and want to compute the next one, we will remove

the check-ins in the previous cluster and repeat our algorithm

again (Alg. 1: 7-9).

C. A Case Study of the Longitudinal Location Exposure Attack

We illustrate an example of our attack in Fig. 4, with the

victim containing 1,969 check-ins in a year, including 1,628

top-1 check-ins. We use the geo-IND mechanism proposed

in [9] to obfuscate every check-ins and then use our de-

obfuscation attack to recover the top-1 location. To further

evaluate the performance of our attack in different length of

time window, we conduct our attack in terms of one week

(Fig. 4a), one month (Fig. 4b) and full year (Fig. 4c). The

results show that with longer time window, the attacker can

recover the user’s real location more accurately (the inference

distance is 200 m in one-week attack compared to less than

50 m in full-year attack).

IV. MOTIVATION OF EDGE-PRIVLOCAD

After the demonstration of the longitudinal attack that can

accurately recover user top locations from long-term obser-

vations, in this section, we propose a novel edge-assisted

location privacy-preserving system named Edge-PrivLoaAd.

First, we formulate the problem of protecting user location

privacy in LBA settings. Then, we reason the privacy and

utility definitions considered in Edge-PrivLocAd. Finally, we

discuss the design principals and goals of our Edge-PrivLocAd

system.

A. Location Privacy Preserving in LBA under the Existence
of Longitudinal Attacker

Considering the edge-computing based LBA system that

includes 3 entities, i.e., the mobile users, the edge devices,

the LBA service providers (w.l.o.g., this includes ad networks

and advertisers), we assume the mobile users and the edge

devices are trusted participants in the system whereas the

service provider is honest-but-curious. That is to say, the

service provider honestly follows the protocol but is curious

about obtaining the users’ real locations for reasons such as

improving the ad matching model. We additionally assume

that the edge devices are maintained in the public interest and

there is no collusion between the edge devices and the honest-
but-curious entities.

We model the longitudinal privacy threat as a parameter

estimation problem. As an honest-but-curious attacker, the

LBA service provider can collect the user’s reported locations

over the ad network, whose goal is to infer one of the top

locations (e.g., home, work place). Let the observed locations

be Q = {𝒒1, . . . , 𝒒𝑛}. For the targeted top location, we assume

the attacker has some prior information about the victim’s

possible locations P = { 𝒑1, . . . , 𝒑𝑘}, which are within certain

range of 𝑟 from the victim’s real location. Now the attacker

tries to further infer which one is the victim’s real location,

and the inference is essentially a parameter estimation problem

given the observed locations (reported from the users/edge

devices) which can be modeled as:

�̂� = arg max
𝒑∈P

𝑃𝑟 [ 𝒑 |𝒒1, . . . , 𝒒𝑛] (5)

To defend against the attack, a location privacy-preserving
mechanism (LPPM) must be enforced on the trusted environ-

ment (i.e., user local side and the edge side) in the system.

Every time an LBA service is triggered, an obfuscated location

is generated from the trusted environment and sent to the LBA

service provider.

B. Privacy and Utility Definitions in Edge-PrivLocAd

We extend the privacy notion of geo-IND to a new variant

that the LPPM can generate a set of multiple obfuscated

locations at the same time. For the ease of analytics, we

consider the bounded version of geo-IND, which introduces a

small value 𝛿 in the inequality to allow a negligible exception.

This relaxation allows us to introduce other distributions than

Laplacian from the location-scale family and new analytic

tools to prove the satisfaction of the privacy definition.

Definition 2 (𝑟-Neighbouring). For all pair of locations 𝒑0,
𝒑1, we say 𝒑0, 𝒑1 are 𝑟-neighbouring if the Euclidean distance
between 𝒑0 and 𝒑1 is less than 𝑟, that is 𝑑𝑖𝑠𝑡 ( 𝒑0, 𝒑1) < 𝑟 .

Definition 3 ((𝑟, 𝜀, 𝛿, 𝑛)-geo-IND). An LPPM satisfies
(𝑟, 𝜀, 𝛿, 𝑛)-geo-indistinguishability, if ∀𝒑0, 𝒑1 that are 𝑟-
neighbouring and for all set of output locations Q =
{𝒒1, . . . , 𝒒𝑛}, the following inequality holds,

𝑃𝑟 [LPPM( 𝒑0) = Q] ≤ 𝑒𝜀𝑃𝑟 [LPPM( 𝒑1) = Q] + 𝛿 (6)

We define two utility metrics in terms of a given targeting

radius 𝑅. From the user’s perspective, the relevant advertisers

are those whose targeted locations are within the circle of

radius 𝑅 from the user. We define this circle as the area of
interest (AOI). However, due to the location obfuscation mech-

anism, the circle will be shifted to the obfuscated locations

where the ads are actually requested and which we define

as area of request (AOR). Now we define two utilities with

respect to AOI and AOR. We first define utilization rate to

quantify how many locations in AOI will not drop outside the

shifted circle AOR.
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Fig. 5: The architecture of Edge-PrivLocAd.

Definition 4 (Utilization Rate). The utilization rate is the
proportion of AOI that are overlapped with AOR.

𝑈𝑅 =
𝐴𝑂𝐼 ∩ 𝐴𝑂𝑅

𝐴𝑂𝐼
(7)

We also define efficacy to measure the probability an ad

sent to the user is relevant to the user’s true location.

Definition 5 (Advertising Efficacy). The advertising efficacy
is the probability of an 𝑎𝑑 being in the range of AOI when it
is requested from an AOR.

𝐴𝐸 = 𝑃𝑟 [𝑎𝑑 ∈ 𝐴𝑂𝐼 | ‖𝑎𝑑 ∈ 𝐴𝑂𝑅‖] (8)

C. Design Goals of Edge-PrivLocAd

In this study, we present Edge-PrivLocAd, a novel edge-

assisted system for mobile users to preserve location privacy in

LBA services. Edge-PrivLocAd conforms with the following

three design goals.

Provable protection against longitudinal attackers. The

proposed system should be able to defend against the afore-

mentioned longitudinal attacker. Formally, it is required to

satisfy the (𝑟, 𝜀, 𝛿, 𝑛)-geo-IND definition.

Optimized location utility for advertising. The proposed

system should include specific techniques to improve the

utility requirements in LBA, i.e., the utilization rate and

advertising efficacy.

Scalable and practical edge-assisted system. The proposed

system introduces edge devices as featured participants to

enhance the performance and scalability of the system and

reduce the computational burden on the mobile client-side.

V. SYSTEM FLOW OF EDGE-PRIVLOCAD

A. System Overview

In order to prevent the longitudinal attackers from de-

obfuscating the top locations, we propose a system which

relies on edge devices to act as data brokers which provide

obfuscated top locations for long-term usage. The role that

the edge devices play in our system is three-fold. First,

edge devices provide services to nearby mobile users whose

locations are closely distributed, making ad requesting process

Algorithm 2 Compute 𝜂-Frequent Location Set

Input: An ordered sequence P = 〈(𝑙1, 𝑓1), . . . , (𝑙𝑀 , 𝑓𝑀 )〉
where 𝑓𝑖 ≥ 𝑓 𝑗 if 𝑖 > 𝑗 ; Threshold 𝜂

Output: A set of top locations T

1: total freq = 0
2: for (𝑙, 𝑓 ) ∈ P do
3: total freq + = 𝑓
4: Add 𝑙 to T

5: if total freq ≥ 𝜂 then
6: return T

efficient. Second, for users with multiple mobile devices,

the edge devices can provide an integrated obfuscation to

prevent the degradation of privacy level further. Third, since

the obfuscation mechanism will retrieve irrelevant ads, the

edge devices can filter out the irrelevant ads and return the

user devices with clean data, which can reduce the bandwidth

overhead.

The Edge-PrivLocAd includes three modules: location man-

agement module, location obfuscation module, and output

selection module. The workflow between these modules is

illustrated in Fig. 5. Specifically, when a user makes an LBA

request, she first sends her present location to the edge devices.

The first module collects the location data to build and manage

her location profile. When it reaches a time window, it will

compute her top locations and send them to the second

module. In the second module, it generates a set of obfuscated

locations for every top location, and renders these locations

as candidate outputs for LBA requests. At the same time, the

output selection module draws a location from the candidate

locations constructed previously to replace the true location

for the LBA request. When the LBA system returns the ads to

the edge device, it will select those whose locations are within

the AOI to send to the target user.

B. Location Management Module

The objective of this module is to manage the user’s

location profile to compute the top locations for obfuscation.

It first collects location check-ins passively when user send an

LBA request. Then, it periodically computes the top locations

according to a configurable time window to construct the set of

top locations in this period. This set is constructed periodically

since users will possibly (although not frequently) change their

top locations in real life. We model the top location set as the

𝜂-Frequent Location Set in Definition 6, which represents the

most frequent locations the user appears in.

Definition 6 (𝜂-Frequent Location Set). Let the sequence P =
〈(𝑙1, 𝑓1), . . . , (𝑙𝑀 , 𝑓𝑀 )〉 be user’s location profile where 𝑓𝑖 ≥
𝑓 𝑗 ,∀𝑖 > 𝑗 . 𝜂-frequent location set is the minimal set such that
the sum of top 𝑘 frequencies is no less than 𝜂.

L𝜂 = 𝑚𝑖𝑛{𝑙1, . . . , 𝑙𝑘 |
𝑘∑
𝑖=1

𝑓𝑖 ≥ 𝜂} (9)

Since users may access different edge devices at different

locations, the edge devices can only record a local part of
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Algorithm 3 Obfuscation Mechanism

Input: Standard deviation 𝜎; Real location (𝑥, 𝑦)
Output: A set of obfuscated locations {(𝑥 ′1, 𝑦′1), . . . , (𝑥 ′𝑛, 𝑦′𝑛)}

1: for 𝑖 ∈ 1 . . . 𝑛 do
2: Draw 𝜃 uniformly in [0, 2𝜋)
3: Draw 𝑠 uniformly in [0, 1)
4: Compute 𝑟 = 𝐹−1𝑅 (𝑠)
5: 𝑥 ′𝑖 = 𝑥 + 𝑟 cos 𝜃, 𝑦′𝑖 = 𝑦 + 𝑟 sin 𝜃

6: return {(𝑥 ′1, 𝑦′1), . . . , (𝑥 ′𝑛, 𝑦′𝑛)}

the whole location profile, and finally merge the 𝜂-Frequent

Location Set. For privacy considerations, this step can be ac-

complished through a secure multi-party computation protocol,

which is however orthogonal to this work.

C. Location Obfuscation Module

The system maintains an obfuscation table T , which maps

every top location to its obfuscated version. For each top loca-

tion, it will generate a set of obfuscated locations rather than

a single one. The benefit comes from the fact that generating

multiple obfuscated locations can improve the utilization rate.

Once a new 𝜂-Frequent Location Set is constructed after a time

window, the location obfuscation module starts to obfuscate

the top locations from the set. For every top location, the

module first checks whether it has already been obfuscated in

table T . If not, it then uses the following LPPM to generate a

set of obfuscated locations and permanently records them in

the table T .

We propose an 𝑛-fold Gaussian mechanism as our LPPM,

which randomly generates 𝑛 obfuscated locations simultane-

ously given a real location. The randomness provides neces-

sary obfuscation to the real location to achieve (𝑟, 𝜀, 𝛿, 𝑛)-geo-

IND. As the name indicates, our obfuscation mechanism is

based on Gaussian distribution. The Gaussian mechanism was

first introduced as a differential privacy mechanism in [15],

which adds noise drawn from a Gaussian distribution with

its variance calibrated according to the sensitivity and privacy

parameters. In our 𝑛-fold Gaussian mechanism, we compute

the obfuscated locations by adding the real location 𝒑 with

𝑛 independent noises drawn from the Gaussian distribution.

Specifically, the mechanism is defined as follows:

Definition 7 (𝑛-fold Gaussian Mechanism). Given a real
location 𝒑, the 𝑛-fold Gaussian LPPM is a random sampler:

LPPM( 𝒑) = ( 𝒑 + 𝑋1, . . . , 𝒑 + 𝑋𝑛) (10)

where 𝑋𝑖 are i.i.d. random variables from N(0, 𝜎2)
To achieve (𝑟, 𝜀, 𝛿, 𝑛)-geo-IND, we set the 𝜎 of the 𝑛-fold

Gaussian Mechanism as the following equation, and leave the

proof of the equation in Theorem 2.

𝜎 =

√
𝑛𝑟

𝜀

√
ln

1
𝛿2 + 𝜀 (11)

The next problem is how to compute the obfuscated loca-

tions. Our algorithm first independently samples 𝑛 Gaussian

Algorithm 4 Output Selection Algorithm

Input: A set of top locations T; Candidate locations T (𝑡) =
{𝒒1, . . . , 𝒒𝑛}

Output: Obfuscated location 𝒒𝑖
1: Select a top location 𝑡
2: Compute the centroid (𝑥, �̄�) ← T (𝑡)
3: Compute the density 𝑓 (𝑥1, 𝑦1), . . . , 𝑓 (𝑥𝑛, 𝑦𝑛) ← T (𝑡)
4: Compute the probability 𝑃𝑟 [A = 𝒒𝑖] =

𝑓 (𝑥𝑖 ,𝑦𝑖)∑
𝑘 𝑓 (𝑥𝑘 ,𝑦𝑘 )

5: Sample 𝒒𝑖 with probability 𝑃𝑟 [A = 𝒒𝑖]

noises from N(0, 𝜎2), and adds the noises to the real location

𝒑 to get 𝑛 obfuscated locations. Remember our noises are

identically sampled from the same probability distribution,

thus we only discuss how to sample a single random noise. To

sample the noise, we consider the probability density function

in polar coordinates:

𝑓 (𝑟, 𝜃) = 1
2𝜋𝜎2 𝑟𝑒

− 𝑟2
2𝜎2 (12)

The polar coordinate system brings us convenience in that

we can independently sample a radius 𝑟 and an angle 𝜃, since

their marginal distributions can be easily computed as:

𝑓𝑅 (𝑟) =
∫ 2𝜋

0
𝑓 (𝑟, 𝜃)𝑑𝜃 =

𝑟

𝜎2 𝑒
− 𝑟2

2𝜎2 (13)

𝑓Θ (𝜃) =
∫ +∞

0
𝑓 (𝑟, 𝜃)𝑑𝑟 =

1
2𝜋

(14)

From the marginal density function, we see the 𝜃 is uni-

formly distributed from the interval [0, 2𝜋), which is easy

to sample. Meanwhile, to sample the radius 𝑟, we need to

compute the cumulative distribution function of 𝑟:

𝐹𝑅 (𝑟) =
∫ 𝑟

0
𝑓𝑅 (𝜌)𝑑𝜌 = 1 − 𝑒

− 𝑟2
2𝜎2 (15)

We can uniformly sample a random number 𝑠 from the interval

[0, 1), and compute the inverse function 𝑟 = 𝐹−1𝑅 (𝑠) to

obtain the random variable 𝑟. Finally, the coordinates of the

obfuscated location is computed as

𝑥 ′ = 𝑥 + 𝑟 cos 𝜃, 𝑦′ = 𝑦 + 𝑟 sin 𝜃 (16)

where, 𝑥, 𝑦 is the coordinates of real location. The obfuscation

algorithm is summarized in Algorithm 3.

D. Output Selection Module

The 𝑛-fold Gaussian mechanism can generate multiple

obfuscated locations to improve the utilization rate, but the

cost is the possibility of retrieving irrelevant ads. As equation

(11) indicates, the magnitude of noise will increase with the

number of obfuscated locations, which means the obfuscated

locations will bring more irrelevant ads to the user. To reduce

the overhead, we design an output selection module to select

a location from the set of obfuscated locations based on

Bayesian posterior probability to achieve better efficacy.

The output selection module implements the algorithm 4 to

draw a location from the candidate outputs according to the

posterior probability of the real location given the obfuscated
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locations 𝒒1, . . . , 𝒒𝑛. The posterior density function of the real

location is

𝑓 (𝑥, 𝑦) = 1
2𝜋𝜎2 𝑒

− (𝑥−�̄�)
2+(𝑦−�̄�)2
2𝜎2 (17)

where 𝑥 = 1
𝑛

∑
𝑘 𝑥𝑘 , �̄� = 1

𝑛

∑
𝑘 𝑦𝑘 . It quantifies the posterior

probability of the real location at (𝑥, 𝑦) given the obfuscated

locations. Specifically, the density 𝑓 (𝑥𝑖 , 𝑦𝑖) quantifies the

possibility of the real location is just placed at (𝑥𝑖 , 𝑦𝑖). Thus,

we can draw every candidate location 𝒒𝑖 with probability

proportional to the following equation:

𝑃𝑟 (A = 𝒒𝑖) =
𝑓 (𝑥𝑖 , 𝑦𝑖)∑
𝑘 𝑓 (𝑥𝑘 , 𝑦𝑘)

(18)

Once the algorithm A selects an obfuscated location, the

system will use this location to request an ad.

VI. PRIVACY ANALYSIS

In this section, we introduce a new privacy analysis tool, the

sufficient statistic to prove the obfuscation mechanisms in V-C

satisfy (𝑟, 𝜀, 𝛿, 𝑛)-geo-IND defined in Definition 3, which can

inject less noise to achieve the same level of privacy compared

to the composition theorem.

Sufficient statistics. We use a new privacy analysis tool, the

sufficient statistic to prove the satisfaction of the (𝑟, 𝜀, 𝛿, 𝑛)-

geo-IND when simultaneously generating multiple obfuscated

locations. The sufficient statistic is a class of statistics that

summarizes the samples without loss of information about the

parameters to estimate. We say a statistic 𝑇 = 𝑇 (𝑋1, . . . , 𝑋𝑛)
is sufficient if the distribution of r.v. 𝑋1, . . . , 𝑋𝑛 conditioned

on 𝑇 = 𝑡 does not depend on 𝜃 for all t.

In our LPPM scenario, we use LPPM( 𝒑) to denote the

random variables from the distribution taking real location

𝒑 as its parameter. Now the statistic 𝑇 = 𝑇 (LPPM( 𝒑)) is

sufficient for 𝒑, if for all set of generated locations Q, the

following conditional probability is independent of 𝒑.

𝑃𝑟 [LPPM( 𝒑) = Q|𝑇 = 𝑡] = 𝑃𝑟 [LPPM( 𝒑) = Q]
𝑃𝑟 [𝑇 (LPPM( 𝒑)) = 𝑡] (19)

With this property, we can build the connection between

the sufficient statistics and the output set of the LPPM.

The following theorem shows the necessary and sufficient

condition for achieving (𝑟, 𝜀, 𝛿, 𝑛)-geo-IND.

Theorem 1. Let the LPPM be a randomized mapping
whose outputs are the random variables which we denote as
LPPM( 𝒑). 𝑇 = 𝑇 (LPPM( 𝒑)) is a sufficient static. Then the
following two statements are equivalent:

(a) Releasing the outputs LPPM( 𝒑) is (𝑟, 𝜀, 𝛿, 𝑛)-geo-IND.
(b) Releasing 𝑇 = 𝑇 (LPPM( 𝒑)) is (𝑟, 𝜀, 𝛿, 𝑛)-geo-IND. 2

Proof. (a) ⇒ (b) immediately follows the post-processing

theorem [15]. We only need to prove (b) ⇒ (a) .

For ∀Q ∈ 𝑅𝑎𝑛𝑔𝑒(LPPM), let 𝑡 = 𝑇 (Q). If (b) is satisfied,

we have

𝑃𝑟 [𝑇 (LPPM( 𝒑0)) = 𝑡] ≤ 𝑒𝜀𝑃𝑟 [𝑇 (LPPM( 𝒑1)) = 𝑡] + 𝛿 (20)

2We note that this theorem can be generalized to (𝜀, 𝛿)-differential privacy,
which may be of independent interest.

Since 𝑇 is a sufficient statistic, the conditional probability in

(19) is independent of 𝒑 which we can denote as the function

ℎ(Q; 𝑡). Thus we conclude with the following inequality:

𝑃𝑟 [LPPM( 𝒑0) = Q] =𝑃𝑟 [𝑇 (LPPM( 𝒑0)) = 𝑡] · ℎ(Q; 𝑡)
≤(𝑒𝜀𝑃𝑟 [𝑇 (LPPM( 𝒑1)) = 𝑡] + 𝛿) · ℎ(Q; 𝑡)
≤𝑒𝜀𝑃𝑟 [LPPM( 𝒑1) = Q] + 𝛿

(21)

�

With sufficient statistics, we can prove the privacy of our

mechanism in an efficient way. We note that the sample mean

of independent Gaussian random variables is a sufficient statis-

tic by Fisher–Neyman factorization theorem. Thus to prove the

set of obfuscated outputs satisfies (𝑟, 𝜀, 𝛿, 𝑛)-geo-IND, we only

need to prove the mean value of them satisfies (𝑟, 𝜀, 𝛿, 1)-geo-

IND. We first consider the simplest case where the Gaussian

mechanism only generates one obfuscated location, and the

privacy is satisfied with the following lemma:

Lemma 1. The 1-fold Gaussian mechanism satisfies
(𝑟, 𝜀, 𝛿, 1)-geo-IND if

𝜎 =
𝑟

𝜀

√
ln

1
𝛿2 + 𝜀 (22)

The proof of Lemma 1 can be found in [13]. Now we

consider an 𝑛-fold Gaussian mechanism, where we generate 𝑛
independent samples 𝒒1, . . . , 𝒒𝑛 from N( 𝒑, 𝜎2

𝑛 ).
Theorem 2. The 𝑛-fold Gaussian mechanism satisfies
(𝑟, 𝜀, 𝛿, 𝑛)-geo-IND if

𝜎 =

√
𝑛𝑟

𝜀

√
ln

1
𝛿2 + 𝜀 (23)

Proof. As 𝒒1, . . . , 𝒒𝑛 are drawn from Gaussian distribution

N( 𝒑, 𝜎2), the sample mean 𝑞 distributed as N( 𝒑, 𝜎2

𝑛 ) is a

sufficient statistic. According to Theorem 1, we only need 𝑞

to satisfy (𝑟, 𝜀, 𝛿, 𝑛)-geo-IND, which is 𝜎√
𝑛
= 𝑟

𝜀

√
ln 1

𝛿2 + 𝜀 by

Lemma 1. �

VII. EVALUATIONS AND DISCUSSIONS

A. Experimental Settings

Dataset. To assess the risk of location privacy leakage, we

exploit a real-world RTB transaction-log dataset and demon-

strate the privacy breaches in existing location-based adver-

tising. We collect 37,262 mobiles users in Shanghai (latitude

∈ [30.7, 31.4], longitude ∈ [121, 122]), with spatiotemporal

data from June 1, 2019 to May 31, 2021, whose size ranges

from 20 spatiotemporal points to 11,435 points per user.

Ethical considerations. The real location name, POIs, IMEIs,

and the landscapes are hidden from the dataset in the map.

Algorithms. We compare our LPPM algorithm with 2 baseline

methods. Our main algorithm refers to the 𝑛-fold Gaussian

mechanism. The first baseline algorithm is called naı̈ve post-
processing mechanism, which first obfuscates the real location

using 1-fold Gaussian mechanism, and then uniformly samples
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Fig. 6: Performance of the longitudinal attack.

𝑛 locations in a certain radius around the obfuscated location.

The second baseline algorithm is the Gaussian mechanism
with plain composition, where we generate 𝑛 obfuscated loca-

tions, each of which satisfies (𝑟, 𝜀
𝑛 , 𝛿

𝑛 , 1)-geo-IND to achieve

(𝑟, 𝜀, 𝛿, 𝑛)-geo-IND in total by the composition theorem.

Metrics. We measure our system w.r.t the following metrics:

(1) Attack success rate. We say an attack succeeds if the

inferred top locations are within a threshold distance from the

real locations. The Attack Success Rate is calculated as the

number of users on which our attack succeeds divided by the

total number of users.

(2) Utilization rate. The utilization rate is defined in

Definition 4. We measure the lower bound of the utilization

rate 𝜐 given a confidence level 𝛼, that is

𝑃𝑟 (𝑈𝑅 ≥ 𝜐) = 𝛼 (24)

(3) Efficacy. We randomly generate a set of locations in AOR

to measure the probability defined in Definition 5.

(4) Performance. We evaluate the running time of edge devices

to provide obfuscation services for multiple users.

Parameter settings. We set 𝛿 = 0.01 and 𝜀 ∈ {1, 1.5}, which

represent a strict and loose privacy level respectively. The

indistinguishable radius 𝑟 is chosen from 500 m, 600 m, 700 m

and 800 m. The targeting radius we choose is 𝑅 = 5 km,

which is the minimal value of the common interval from 5 km

to 25 km as we investigate in the four companies’ settings.

We choose it because it is more difficult to achieve a better

utility for a smaller radius, which can better justify our system.

Meanwhile, we set confidence level 𝛼 = 0.9.

Implementation and configuration. To answer the above

questions, we implement our algorithms in Scala, and run our

system on Raspberry Pi 3. Throughout the experiment, we

conduct 100,000 trials for each parameter combination and

then use Monte Carlo method to estimate the utility metrics.

B. Evaluating Our Attack and the Effectiveness of Defense

In the one-time geo-IND obfuscation mechanism, we add

independent noises to every check-ins to mimic the obfuscated

locations used in LBA. We use the original mechanism and

set the privacy parameters consistent with the geo-IND paper

[9], i.e., 𝑟 = 200 m and 𝑙 ∈ {ln(2), ln(4), ln(6)}, indicating the

user can enjoy, resp., ( ln(2)200 (𝑚−1))-geo-IND, ( ln(4)200 (𝑚−1))-geo-

IND, and ( ln(6)200 (𝑚−1))-geo-IND. In our permanent obfuscation

mechanism, we implement a 10-fold Gaussian mechanism and

set the privacy parameters as 𝑟 = 500 m and 𝜀 ∈ {1, 1.5} which

is almost the same privacy level as above3.

Observation-1. One-time geo-IND mechanisms are prone
to longitudinal attack, while our permanent obfuscation
mechanism can thwart this attack. The attack results are

illustrated in Fig. 6. Our results show that the top-1 locations

can be accurately recovered under one-time geo-IND mech-

anisms, with more than 90% of user top-1 locations inferred

within 200 m for 𝑙 = ln 4 and ln 6, and even with the most

strict privacy level where 𝑙 = ln 2, 75% can be inferred within

200 m. The success rates of top-2 locations under one-time

geo-IND mechanisms should not be underrated either, since

users are still at the risk of privacy breach, with more than 50%

possibility to recover top-2 within 200 m when 𝑙 = ln 4 and

ln 6. On the other hand, the attack results also demonstrate our

permanent obfuscation mechanism can thwart the longitudinal

attack. Less than 1% of user locations can be recovered within

200 m for both top-1 and top-2 locations, and only 6.8% of

user top-1 locations and 5% of user top-2 locations can be

recovered within 500 m.

C. Algorithm Comparing and Parameter Selection

Algorithm comparing. We compare the utilization rate of

the 𝑛-fold Gaussian mechanism with the baseline mechanisms.

The experiment is evaluated with respect to the number 𝑛 of

obfuscated locations ranging from 1 to 10. We fix 𝜀 = 1,

𝑟 = 500 m with other default parameters.

Observation-2. Our proposed mechanism outperforms the
naı̈ve post-processing mechanism and composition-based
Gaussian mechanism, and generating multiple obfuscated
locations will decrease the utilization rate in composition-
based Gaussian mechanism. As the results show, our 𝑛-fold

Gaussian mechanism significantly outperforms the other two

baseline algorithms. Especially when 𝑛 = 10, our mechanism

can achieve almost 100% utilization rate while in naı̈ve

post-processing mechanism and composition-based Gaussian

mechanism only 58% and merely 20% of utilization rate

on average can be achieved respectively. And surprisingly,

we find the composition-based Gaussian mechanism fails to

enhance the utilization rate by generating multiple obfuscated

locations, which means our sufficient statistic provides tighter

error bounds on noise composition when generating multiple

obfuscated locations, compared to the composition theorem.

Impact of 𝑛, 𝜀 and 𝑟. We evaluate the utilization rate

and efficacy with 𝑛 ranging from 1 to 10, 𝜀 = 1.0 and 1.5
and 𝑟 = 500𝑚, 600𝑚, 700𝑚, 800𝑚 respectively. For every

parameter combinations, we conduct 100,000 trials for both

utilization rate and efficacy.

Observation-3. Generating more obfuscated outputs can
improve the utilization rate in our 𝑛-fold Gaussian mecha-
nism. Fig. 8 shows the minimal utilization rate under different

numbers of obfuscated outputs. As the result shows, generating

3The paper [9] uses 𝑙 to denote the privacy level which is equivalent to the
𝜀 representation in this paper.
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(a) 𝑛-fold Gaussian mechanism. (b) Post-processing mechanism. (c) Plain DP composition.

Fig. 7: Utilization rate between different mechanisms, where 𝜀 = 1 and 𝑟 = 500.

(a) 𝜀 = 1. (b) 𝜀 = 1.5.

Fig. 8: Minimal utilization rate where 𝛼 = 0.9.

(a) 𝑟 = 500. (b) 𝑟 = 600. (c) 𝑟 = 700. (d) 𝑟 = 800.

Fig. 9: Efficacy under various 𝑟, where 𝜀= 1.

TABLE II: Obfuscation processing time.

Number of Users 2000 4000 8000 16000 32000

Processing Time (s) 340 627 1166 2090 4014

more obfuscated outputs can improve the utilization rate.

When the privacy level is loose (𝜀 = 1.5), our mechanism

can improve the utilization rate from 0.6 for 𝑛 = 1 to 0.9 for

𝑛 = 10. Even when the privacy level is strict (𝜀 = 1), the

utilization rate can also achieve an improvement by 60% from

𝑛 = 1 to 𝑛 = 10 in general. This indicates our 𝑛-fold Gaussian

mechanism outperforms the single-fold Gaussian mechanism.

Observation-4. With the output selection module, the
efficacy does not significantly decrease with the increase
of obfuscated outputs. Fig. 9 illustrates the evaluation of

efficacy versus the number 𝑛 of obfuscated locations, we

find the efficacy does not decrease too much compared to

generating one candidate output. This means our system

will not significantly increase the unwanted advertisements,

because the output selection module can select the most useful

candidate locations with a higher probability.

D. Scalability of Edge-PrivLocAd

We evaluate the performance of edge devices under multiple

users. We use Raspberry Pi 3 to emulate the experiment and

evaluate the performance. We first evaluate the time to build

a user’s location profile and generate candidate locations. We

consider our system updates the user’s location profile every

three months. Our evaluation results are shown in Table II.

Since our obfuscation is not a real-time operation, hence the

processing time is acceptable in real-world applications. Then

we evaluate the performance of the output selection module.

Our results in Table III show our system can respond to

multiple users with low latency.

TABLE III: Output selection time.

Number of Users 2000 4000 8000 16000 32000

Processing Time (ms) 90 175 350 698 1377

VIII. RELATED WORK

This work falls into the intersection of location privacy and

mobile advertising security. In this section, we describe related

works that are closed to these research areas respectively.

DP for location privacy. Protecting user location privacy

with formal and rigorous DP(-like) guarantee has been studied

along two directions in the literature. One such line of works

has been focusing on releasing user location data while satis-

fying differential privacy [4]–[8], which is orthogonal to this

work. Another direction of prior works explored the query-

time protection to user location privacy. Andres et al. proposed

geo-IND [9], a seminal DP-like framework that perturbs user

location through calibrating Laplacian noise. The following

work by Bordenabe et al. [20] designed an optimal mechanism

based on linear programming, which minimizes the QoS loss

while maintaining privacy guarantees. Later works such as [21]

and [22] adopted a Bayesian remapping procedure and a multi-

step search space pruning approach, resp., to make the optimal

process more efficient and practical.

Mobile advertising security. Related works studied the

mobile advertising security problem in terms of both analysis
and defense. On the analysis side, some recent work [23]–[26]

focused on measuring impending threats in mobile advertising,

wherein the threat to users’ location privacy is also highlighted

[24]. On the defense side, many schemes [27]–[31] have

been proposed for private user information gathering and

private ad delivery. Most of these schemes incorporated cryp-

tographic approaches like Paillier homomorphic encryption

[27], private information retrieval [30], and trusted hardware

[28], which make them not efficient enough to respond to

an ad request in real-time. The aforementioned mechanisms
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are presented for traditional mobile advertising environment,

while most recently, Deng et al. [31] proposed a privacy-

preserving mechanism to protect user privacy in a real-time

bidding (RTB) advertising setting. However, to the best of our

knowledge, no similar works except for this paper investigate

the location privacy issues in location-based advertising and

propose defense mechanisms in this setting.

IX. CONCLUSION

In this paper, we identify a new type of attack – the

longitudinal attack aiming to infer obfuscated locations in LBA

scenarios. We propose a de-obfuscation attack to showcase that

existing one-time geo-IND based mechanisms can accurately

recover the top locations, which poses severe privacy threats

to LBA users. To address this privacy issue, we propose a

novel edge-assisted system Edge-PrivLocAd to manage the

location profile and generate permanent obfuscation for top

locations. We prove the privacy of our mechanism using a

novel analysis tool, the sufficient statistic which can provide

tighter error bounds on noise composition compared to the

composition theorem in differential privacy. The experimental

results demonstrate the feasibility and effectiveness of Edge-

PrivLocAd to provide both rigorous privacy guarantee and

robust utility.
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