
GB-IDS: An Intrusion Detection System for CAN
Bus Based on Graph Analysis

Yan Meng
Shanghai Jiao Tong University

Shanghai, China

yan meng@sjtu.edu.cn

Jiachun Li
Shanghai Jiao Tong University

Shanghai, China

jiachunli@sjtu.edu.cn

Fazhong Liu
Shanghai Jiao Tong University

Shanghai, China

liufazhong@sjtu.edu.cn

Shaofeng Li
Frontier Research Center, Peng Cheng Laboratory

Shenzhen, China

lishf@pcl.ac.cn

Haotian Hu
Intel

Shanghai, China

haotian.hu@intel.com

Haojin Zhu
Shanghai Jiao Tong University

Shanghai, China

zhu-hj@sjtu.edu.cn

Abstract—In smart connected vehicles, the controller area
network (CAN) bus provides a platform for communication and
interaction among various heterogeneous electronic control units
(ECUs), enabling intelligent travel services for users. However,
existing researches show that the CAN bus is vulnerable to
various injection attacks (e.g., denial of service (DoS) attack,
fuzzing attack, impersonation attack), which not only threaten the
operation of vehicles but also jeopardize user safety. Traditional
intrusion detection systems (IDSs) are limited in their practicality,
as they either require parsing the CAN communication protocol
of the vehicle or rely on massive amounts of training data. In this
paper, we propose GB-IDS, a graph-based CAN bus detection sys-
tem. GB-IDS leverages a novel graph structure that characterizes
the CAN ID time series, which overcomes the protocol parsing
defect and achieves more accurate characterization than previous
works. Meanwhile, the variational autoencoder (VAE) is exploited
to train classifiers without negative samples. Our experimental
results on the public dataset, called OTIDS, demonstrate that
GB-IDS can achieve high detection success rates, especially in
the absence of negative samples.

Index Terms—in-vehicle network, intrusion detection, graph
analysis, CAN bus

I. INTRODUCTION

With the equipment of various electronic control units

(ECUs), vehicles are becoming more intelligent and providing

users with diversified services (e.g., autonomous driving, in-

vehicle entertainments) beyond traditional travel functions [1].

From the in-vehicle perspective, various heterogeneous ECUs

(e.g., accelerometers, fuel gauges, and GPS sensors) commu-

nicate with each other through the controller area network

(CAN) bus [2]. A message in the CAN bus contains elements

such as timestamp, CAN ID, and CAN Data, representing the

arrival time of the message, the type of the message, and the

effective payload of the message, respectively. The message

sequence in the CAN bus supports the implementation of

complex functions in vehicles and promotes the development

of intelligent vehicles.

Although the CAN bus [2] is an efficient and flexible in-

vehicle network, it was designed without considering security

Haojin Zhu is the corresponding author.

factors such as authentication and authorization mechanisms.

More seriously, most CAN messages are plain text with-

out encryption. Thus, attackers can readily inject malicious

messages into CAN bus to hijack ECUs, leading to severe

consequences such as brake failure and sudden flameout. To

remedy these security issues existing in CAN bus, numerous

intrusion detection systems (IDSs) based on diverse features

have been proposed [3]–[6].

Existing intrusion detection systems (IDSs) face two signifi-

cant challenges. Firstly, some solutions [6], [7] require knowl-

edge of the details of the CAN protocol or even modification

of the CAN protocol (e.g., adding an additional authentication

field). However, these options are not practical for a signif-

icant portion of smart vehicles with closed-source protocols.

Secondly, some IDSs (e.g., graph-based IDSs [8]–[10]) rely

on advanced machine learning models to differentiate CAN

messages during intrusion attacks from those in attack-free

cases. However, these models require an extensive amount of

carefully labeled CAN messages (i.e., intrusion and attack-

free messages) to train an effective classifier. It is not always

easy to collect a universal set of various attack patterns for a

given arbitrary smart vehicle, making it difficult to generate

an effective classifier. Therefore, there is a need to propose

a novel IDS for the CAN bus that is protocol-independent,

efficient, and does not rely on negative samples.

In this study, we propose GB-IDS, a graph-based intrusion

detection system for detecting intrusion attacks in the CAN

bus. GB-IDS is based on the key observation that the pattern

of CAN messages during intrusion attacks is significantly dif-

ferent from that in attack-free cases. First, to achieve protocol

independence, GB-IDS only uses the CAN ID and ignores the

payload information. Specifically, GB-IDS converts the CAN

messages during the detecting time slot into a graph, where

the CAN IDs are vertices and CAN ID transitions are edges.

Then, unlike existing graph-based IDSs [10] that focus only

on the CAN ID transition relationships, GB-IDS preserves

the time sequence information for each edge in the generated

graph, which effectively improves detection efficiency. Finally,

S
O
F

11-bit
Identifier

R
T
R

I
D
E

r0 DLC 0…8 Bytes
Data CRC ACK

E
O
F

I
F
S

Start of Frame

Arbitration
Field

Remote
Transmission
Request Bit

Identifier
Extension

Data Length
Code

Reserved
Bits

Cyclic
Redundancy

Check

Acknowledge
Field

End of
Frame

Intermission
Frame Space

Fig. 1. The format of a CAN frame.

to generate an effective classifier without negative samples,

GB-IDS converts the graphs collected in the attack-free cases

into features based on the PageRank algorithm and trains

the classifier using a variational auto-encoder (VAE). Since

the VAE can effectively characterize the abnormal level of

a given graph compared to graphs used for training, GB-

IDS can effectively identify intrusion behaviors based on the

reconstruction loss calculated by VAE.

We evaluated the performance of GB-IDS on the pub-

licly available OTIDS dataset, which comprises 236.9 million

attack-free CAN messages and 224.4 million intrusion attack

CAN messages. The detection accuracy for denial-of-service

(DoS), fuzzing, and impersonation attacks were found to be

99.17%, 99.72%, and 99.69%, respectively, with a detection

time of only 0.08 seconds. In summary, the main contributions

of this paper are:

• We propose GB-IDS, a graph-based IDS for the in-

vehicle CAN bus that can detect intrusion attacks without

prior knowledge of CAN protocols and without relying

on negative training samples.

• To improve detection performance, we introduce a novel

graph structure that preserves both CAN ID transition

and time interval information. Additionally, we propose

a VAE-based classifier to overcome the limitations of

requiring negative samples.

• We evaluate GB-IDS on a third-party public dataset and

demonstrate its effectiveness in detecting DoS, fuzzing,

and impersonation attacks. Furthermore, GB-IDS exhibits

acceptable time costs for detection.

We have organized the remainder of this paper as follows:

In Section II, we provide a brief overview of related works on

IDSs for CAN bus. In Section III, we present the details of GB-

IDS’s system design. The implementation and evaluation of

GB-IDS are described in Section IV, followed by a discussion

of our findings in Section V. Finally, we conclude this paper

in Section VI.

II. PRELIMINARIES AND RELATED WORK

In this section, we provide an introduction to the concept

of the CAN bus, followed by a review of the intrusion attacks

targeting the CAN bus. We then provide a survey of the

existing IDSs designed to detect these attacks.

Normal
ECU A

Normal message 0x123
Jammed

Attacker

0x000

0x000

(a) DoS attack.

Normal
ECU A

Normal message 0x123

Random

Attacker

0x123

0x456

(b) Fuzzing attack.

Normal
ECU A

Normal message 0x123

Impersonation

Attacker

0x123

0x123

Removed

(c) Impersonation attack.

Fig. 2. Illustration of intrusion attacks in CAN bus.

A. Controller Area Network

To ensure efficient communication between ECUs in vehi-

cles, the CAN was proposed as a multifunctional bus standard

that is superior to other standards. Unlike other protocols

that use station addresses to deliver messages, CAN bus uses

unique message identifiers to exclusively identify messages

and stipulate their priorities. This makes the CAN bus flexible

and unaffected by the addition or removal of ECU nodes in

the system.

In this section, we introduce the message formats in the

CAN bus. The basic CAN bus supports two different message

formats or frame formats: the standard frame format (described

in CAN2.0 and CAN2.0B) and the extended frame format

(described only in CAN 2.0B). The only difference between

them is their lengths. Figure 1 illustrates the format of the

standard CAN message (frame). In our study, we focus on

the CAN ID, which represents the priority of the message.

The smaller the CAN ID value is, the higher the priority of

the message. For instance, the CAN ID value in the braking-

related CAN message is smaller than that in an entertainment-

related CAN message.

However, in modern vehicle manufacturing, manufacturers

usually modify CAN protocols for specific usage, making

CAN bus protocols diverse and difficult to reverse engineer.

Therefore, messages sent over the CAN bus are not standard.

Due to these complex protocols, it is time-consuming and

costly to reverse engineer the protocols to identify each mes-

sage in real-world situations. This motivated our work, which

aims to provide a universal mechanism to detect intrusion

behaviors in the CAN bus without prior knowledge of the

details of CAN protocols.

B. Intrusion Attacks for In-vehicle CAN Bus

In this subsection, we will discuss different types of attacks

that can be performed on the CAN bus, including denial

Graph Construction Feature Generation Model Training Intrusion Detection

Graph construction

Extract CAN ID

Model setup Intrusion detection

Threshold Threshold

Fig. 3. Workflow of GB-IDS.

of service (DoS) attacks, fuzzing attacks, and impersonation

attacks.

• DoS attack. As shown in Fig. 2(a), the attacker injects

meaningless message frames into the CAN bus, inter-

rupting the communication of the ECUs. As a result,

legitimate messages are blocked until the resources can

be recovered.

• Fuzzing attack. As shown in Fig. 2(b), fuzzing attacks

involve the injection of invalid, unexpected, or random

message frames into the CAN bus, similar to a fuzzing

test. These attacks can cause accidents, damage to the

CAN bus, and even pose a threat to the security of the

vehicle.

• Impersonation attack. As shown in Fig. 2(c), the at-

tacker impersonates a specific ECU by sending corre-

sponding signals to achieve their goals. They first dis-

connect a particular ECU and then replace it by sending

a message frame with the corresponding CAN ID. For

instance, the attacker may disconnect the ECU component

that sends the CAN ID 0x123 and replace it by sending

a message frame with the same ID. These attacks are

purposeful and destructive, aimed at attacking the system

from a specific ECU.

C. Existing Intrusion Detection Systems

Existing research has investigated CAN IDS and can be

classified into two categories: detection based on raw data and

detection based on graphs.

For detection based on raw data, Choi et al. proposed a

voltage-based intrusion detection system [11]. Their system

uses the unique electrical characteristics of a CAN signal as

a fingerprint for electronic control units. However, the system

has three drawbacks. Firstly, it cannot ensure the scalability

of detection. Secondly, it is challenging to establish specific

patterns for each attack. Finally, the side-channel mechanism

requires prior knowledge of specific attacks and can be easily

disturbed by environmental factors such as magnetic and elec-

tric fields. Hossain et al. proposed an LSTM-based anomaly

detection mechanism on CAN messages [7]. However, these

methods require negative samples for model training, which

can be difficult to obtain in real-world detection scenarios.

Apart from raw data-based mechanisms, researchers have

also employed graph-based mechanisms. Graph-based mecha-

nisms capture relationships between CAN messages and pro-

vide more information. Firstly, Islam et al. proposed a graph-

based mechanism that uses chi-square testing to measure the

difference between message graphs [8]. Jedh et al. proposed a

CAN bus IDS based on the similarities of successive message-

sequence graphs [9]. Furthermore, Islam et al. [10] proposed

GGNB to verify the conclusion that entropy influences the

strength of the anomaly detection system. However, these

methods also require negative samples for effective classifier

training, which can be challenging to obtain in practice.

III. SYSTEM DESIGN

In this section, we propose a graph-based in-vehicle CAN

bus IDS named GB-IDS to detect intrusion attacks. As illus-

trated in Fig. 3, GB-IDS consists of four modules: the Graph
Construction Module, the Feature Generation Module, the

Model Training Module, and the Intrusion Detection Module.

In the Graph Construction Module, GB-IDS obtains initial

data from the CAN bus in vehicles and generates directed

and weighted graphs with extracted CAN IDs. In the Feature
Generation Module, GB-IDS assigns a specific value to each

vertex existing in the graphs to denote its priority and calculate

the feature vector. In the Model Training Module, GB-IDS

utilizes the VAE to train a classifier based on the features ex-

tracted from graphs generated from attack-free CAN messages.

Finally, for a given time slot, the Intrusion Detection Module
uses the trained classifier to determine whether an intrusion

attack is launched, alerts the users, and marks the timestamp

when the intrusion starts. We elaborate on the details of each

module as follows.

A. Graph Construction Module

In this subsection, we describe how we convert the CAN

messages into graphs that can be used to identify intrusion

behaviors in a protocol-unrelated manner. As the protocols

used in communication networks of different vehicles can vary,

even between different types of the same manufacturer, we

select two common fields in messages, namely, timestamps

and CAN ID, as the inputs for graph construction. To achieve

CAN ID

1 0x01A

2 0x02B

3 0x03C

4 0x01A

CAN ID

1 0x01A

2 0x02B

3 0x03C

4 0x01A

5 0x02B

6 0x03C

01A

02B

03C

01A

02B

03C

(a) From simple graph to complex graph.

Time CAN ID

0x01A

0x02B

0x03C

0x01A

01A

02B

03C

01A

02B

03C

Time CAN ID

0x02B

0x03C

0x01A

0x02B

(b) Considering time sequence information.

Fig. 4. Design of our proposed graph structure.

this, we collect CAN IDs in the order of timestamps over a

fixed period of time as a time window or a fixed number of

messages as a message window δT . We take adjacent CAN

IDs as directed edges and construct a graph. For instance,

in the left part of Fig. 4(a), we can convert the messages in

the window as 01A → 02B, 02B → 03C, and 03C → 01A,

resulting in 3 directed edges. By default, we use 100 messages

as a fixed message window δT and generate a graph Gt as

below:

Gt = ∪
ti
(IDti → IDti+1

),

ti ∈ (t0 + kδT, t0 + (k + 1)δT), k ∈ N.
(1)

However, as shown in Fig. 4(a), directly using the simple

graphs utilized by existing works [8] cannot achieve optimal

performance. The reason is that simple graphs treat dupli-

cated edges as one. For example, the two message sequences

containing 4 and 6 messages illustrated in Fig. 4(a) will be

converted to the same graph. Thus, we define multiple edges

between two vertices (i.e., CAN IDs) as long as there are

multiple transitions.

Besides, we also define a weight for each edge. As shown

in Fig. 4(b), simple graphs cannot distinguish graphs with a

circular structure. Sequences 01A → 02B → 03C → 01A and

02B → 03C → 01A → 02B are converted to the same graph.

Thus, for CAN ID IDi and IDj with timestamps TSi and

TSj , we define the weight of edge IDi → IDj as TSj−TSi.

We also define an edge for the start CAN ID with a weight

of 0 (e.g., 02B in Fig. 4(b)). Thus, the constructed graph will

contain both transition details and time sequence information.

Therefore, the final generated graph G′
t = (V,E)

contains NV vertices {v1, v2, · · · , vNV
} and NE edges

{E1, E2, · · · , ENE
}. The i-th edge Ei can be written as:

Ei = (ve(i) → ve(i+1), TSi+1 − TSi), (2)

where ve(i) and ve(i+1) are two CAN IDs with timestamps

TSi and TSi+1.

B. Feature Generation Module

For the sequence of directed graphs G′
t formed by CAN

messages, we need a method to measure the importance of

vertices so that they can be transformed into mathematical

vectors. We propose a feature generation method based on

the PageRank algorithm [12] to calculate the priority of each

vertex based on its edges.

To measure vertex priorities, we first review the basic idea of

the PageRank algorithm and then introduce our optimization.

1) PageRank Algorithm: The PageRank algorithm was first

proposed by Google for ranking websites in search engine

results. It originally used the weight of websites and out-

degrees to analyze the significance of each web page. In other

words, a page that is referred to more often counts more.

In general, it assigns a specific weight to every vertex in a

directed graph to measure its importance.

Assume there are three nodes V1 = 01A, V2 = 02B, and

V3 = 03C as shown in Fig. 4(a). To ensure that probabilities

range from 0 to 1, we hypothesize initial values for every

node as 1
3 , which means an even division. We use L(Vi) to

denote the sum of outgoing edges of vertex Vi and let Pri(Vi)
denote the PageRank value of vertex Vi. In every iteration, we

recalculate the weights Pri(Vi) by adding those that point to

Vi. For example, in the next iteration, we compute the weight

of page V1 as:

Pri(V1) =
Pri(V2)

L(V2)
+

Pri(V3)

L(V3)
. (3)

In case there is an isolated vertex whose in-degree is 0, a

minimum value is set so that every web page can be visited

with a minimal probability. We use q to denote a damping

factor and N to denote the sum of vertices. The general

formula can be concluded as:

Pri(V1) =
1− q

NV
+ q · (Pri(V2)

L(V2)
+

Pri(V3)

L(V3)
), (4)

where NV represents the total number of vertices, which is 3
in Fig. 4(a).

2) Optimization of PageRank: The PageRank algorithm

mentioned above does not take into account multiple edges

between two vertices and the weights of edges. To address

this, we use the weights of edges related to vertex pi when

calculating its priority. Thus, the equation 4 for calculating the

priority of a vertex pi, denoted as Pri(pi), can be optimized

as:

Pri(pi) =
1− q

NV
+ q

∑

pj

Pri(pj)

C(pj)
, (5)

where C(pj) represents the sum of edge weights between

vertex pj and pi, and NV represents the total number of

vertices. q is the damping coefficient set for isolated vertices,

which is usually set to 0.85.

C. Model Training Module

The Model Training Module uses the vectors generated by

the Feature Generation Module during attack-free scenarios as

inputs in a VAE model. The VAE (Variational Autoencoder)

is a generative model used for generating samples similar

to the inputs based on the distribution of input properties,

consisting of an encoder and a decoder. The VAE model

can be implemented in two stages: the training stage and the

generating stage.

1) Training Stage: During the training stage, the VAE

learns to encode input samples into a latent space, which

is a lower-dimensional space that represents the distribution

of input features. The VAE model then fetches the features

from the distribution in the latent space and decodes them to

generate outputs.

2) Generating Stage: In the generating stage, any input

defined as x is encoded by the encoder and sent into the

latent space as xencoded. After this procedure, the VAE model

reconstructs the encoded input xencoded into another sample

xrc based on the distribution of positive features in the latent

space.

For each input x and the reconstructed sample xrc, we can

calculate the reconstruction loss lossrc as follows:

lossrc = −(x̄ log(1e−10 + x̄rc) + log(1− x̄rc)), (6)

where x̄ and x̄rc represent the mean value of input vectors

and output vectors.

If the input is positive, the corresponding output xrc will be

similar to x, and the reconstruction loss lossrc will be below

the pre-defined threshold. However, if the input x is negative,

xrc’s reconstruction depends on the knowledge of positive

features, and the corresponding output xrc will differ from

x. In this case, the reconstruction loss lossrc will be above

the pre-defined threshold. By analyzing the reconstruction loss,

we can detect intrusion behavior and realize the function of

intrusion behavior detection.

D. Intrusion Detection

As described in Section III-C, the GB-IDS measures the

difference between inputs and outputs and determines the

range of a positive input. We assume the upper bound is

ThrU and the lower bound is ThrL, so the raw threshold

is Thrraw = (ThrL, ThrU). In a real-world situation, we

suppose that the recall rate of GB-IDS should be high, thus

we introduce an error coefficient θ and adjust the threshold

as:

Thr = ((1 + θ) · ThrL, (1− θ) · ThrU). (7)

The threshold Thr is generated by the vehicle in a secure

environment, such as after production, and represents the

traffic pattern in the CAN bus. If the reconstruction error of

some input is not in the range of Thr, the GB-IDS will report

an intrusion event.

2230

223053

0

Predicted Value

Ac
tu

al

Normal Attack

Normal

Attack

(a) DoS attack.

586

507612

4

Predicted Value

A
ct

ua
l

Normal Attack

Normal

Attack

(b) Fuzzing attack.

8859

9707

24

Predicted Value

A
ct

ua
l

Normal Attack

Normal

Attack

(c) Impersonation.

Fig. 5. Confusion matrixs when detecting intrusion attacks.

IV. EVALUATION

In this section, we present the evaluation of our system on

an existing public dataset and measure its ability to detect

DoS attacks, fuzzing attacks, and impersonation attacks. We

introduce the dataset and evaluation results as follows.

A. Dataset

We evaluated our system on the public OTIDS dataset

[4], which includes 656,579, 591,990, 995,472, and 2,369,868

CAN messages collected in DoS attack, fuzzing attack, im-

personation attack, and attack-free states, respectively. The

messages were generated by logging CAN traffic via the OBD-

II port from a real vehicle while message injection attacks were

being performed.

B. Performance Analysis

In this section, we evaluate the overall performance of GB-

IDS under intrusion attack scenarios, and present the detection

performance in Fig. 5.

1) Performance on Detecting DoS Attacks: We first mea-

sure the ability of GB-IDS to detect DoS attacks in the OTIDS

dataset. As shown in Fig. 5(a), the detection accuracy is

99.71%. Furthermore, if we consider the attack-free cases

as negative cases and DoS attacks as positive cases, the

precision, recall, and F1-score are 100%, 98.71%, and 99.35%,

respectively.

2) Performance on Detecting Fuzzing Attacks: We present

the confusion matrix for detecting fuzzing attacks in Fig. 5(b),

and report a detection accuracy of 99.72%. Moreover, if we

consider fuzzing attacks as positive cases, the precision, recall,

and F1-score are 99.92%, 99.76%, and 99.84%, respectively.

3) Performance on Detecting Impersonation Attacks: The

confusion matrix for detecting impersonation attacks is illus-

trated in Fig. 5(c), and the detection accuracy is reported to

be 99.69%. If we consider impersonation attacks as positive

cases, the precision, recall, and F1-score are 97.59%, 99.28%,

and 98.43%, respectively.

4) Time Overhead: Efficiency is crucial for an IDS, espe-

cially in moving vehicles. To evaluate GB-IDS’s efficiency,

we measured its average time cost on the OTIDS dataset.

Since the SAE J1939 protocol specifies a communication rate

of 250 kbps, we evaluated our system’s efficiency based on

this rate. According to ISO 11898, the minimum length of a

CAN frame is 46 bits and the maximum length is 110 bits.

We assumed an average length of 78 bits for normal CAN

bus traffic, which means there are approximately 3,000 CAN

messages transmitted per second. We found that our average

detection time is about 0.085 seconds with the time window set

to 100 messages. This means that we can detect an anomaly in

the CAN bus in less than 260 CAN messages after it occurs.

V. DISCUSSION

While the proposed GB-IDS demonstrates good perfor-

mance and high practicability, it still has certain limitations.

In this section, we discuss these limitations and suggest some

future research directions.

A. Limitations

1) Traceability: One major limitation of GB-IDS is that it

is unable to detect which message is injected. GB-IDS pre-

processes several CAN messages in a fixed time window and

translates them as a whole to represent the status of the CAN

bus. Since the detection consequences of GB-IDS are based on

multiple messages, it is difficult to identify which message in

the time window is malicious and injected by attackers. GB-

IDS can only identify the part or time period of the CAN bus

that is attacked, but cannot trace back to the specific message.

Thus, GB-IDS needs to be enhanced to identify malicious

messages with greater precision.

2) Risk of Model Tampering: Another limitation of GB-

IDS is that it runs in an external and untrusted environment,

making it vulnerable to attacks. Attackers can gain access to

the model and tamper with the classifier, potentially damaging

GB-IDS and disrupting the detection process. We assume an

environment in which attackers can easily read and modify the

model, thus making our system less secure than we propose.

Attacks can be implemented at both software and hardware

levels, posing a significant risk to GB-IDS.

B. Future Work

1) Trusted Execution Environment: As mentioned earlier,

working in an untrusted environment poses a significant se-

curity threat to our model. To address this issue, we plan to

deploy our model in a Trusted Execution Environment (TEE),

such as Intel SGX, to ensure runtime security and prevent

attackers from tampering with or stealing our model.

2) Time Window Auto-Adjustment: In our methodology, we

set the time window for collecting CAN messages and gen-

erating graphs to 100 CAN messages as a default value, and

compared the results obtained with different time windows.

However, we believe that in some situations, there may be a

better time window to use. Therefore, we plan to investigate

how to auto-adjust the value of the time window to obtain the

best results in every condition.

3) Impact of User Behaviors on CAN Message Patterns:
In our methodology, we claim that the distribution of CAN

messages is different in attack-free and intrusion conditions.

However, different users may have an impact on the patterns of

CAN messages. Different driving habits of users may result in

different sequences of CAN messages. We plan to investigate

users’ driving habits and generate fingerprinting by CAN

messages for each user. This approach will help us in user

authentication and ensure users’ privacy.

VI. CONCLUSION

In this paper, we present GB-IDS, an IDS designed for

detecting intrusion attacks such as DoS, fuzzing, and imper-

sonation attacks on in-vehicle CAN buses in real time. GB-

IDS extracts CAN messages from vehicles via the OBD-II

port and generates graphs based on the relationships between

CAN IDs. It uses an optimized PageRank algorithm to assign

weights to each CAN ID as a vertex and collects the weights

on vertexes as a vector. GB-IDS adopts a VAE model to train

with only attack-free data and determines the threshold of the

attack-free samples’ reconstruction loss. During the detection

session, GB-IDS compares the reconstruction loss of the input

data with the threshold and alerts when the loss is out of range.

GB-IDS achieves an accuracy of 99.71%, 99.72%, and 99.69%

under DoS, fuzzing, and impersonation attacks, respectively,

in the public dataset OTIDS.

ACKNOWLEDGMENT

This research was supported by National Natural Science

Foundation of China under Grants No. 62132013.

REFERENCES

[1] C. Isidore, “Here’s why car prices are so high, and why
that matters,” https://edition.cnn.com/2021/07/08/business/car-prices-
inflation/index.html.

[2] S. C. HPL, “Introduction to the controller area network (can),” Appli-
cation Report SLOA101, pp. 1–17, 2002.

[3] G. Dupont, A. Lekidis, J. Den Hartog, and S. Etalle, “Automotive
controller area network (can) bus intrusion dataset v2,” 2019.

[4] H. Lee, S. H. Jeong, and H. K. Kim, “Otids: A novel intrusion detection
system for in-vehicle network by using remote frame,” in 2017 15th
Annual Conference on Privacy, Security and Trust (PST). IEEE, 2017,
pp. 57–5709.

[5] M. Marchetti and D. Stabili, “Anomaly detection of can bus messages
through analysis of id sequences,” in 2017 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2017, pp. 1577–1583.

[6] Q. Wang and S. Sawhney, “Vecure: A practical security framework to
protect the can bus of vehicles,” in 2014 International Conference on
the Internet of Things (IOT). IEEE, 2014, pp. 13–18.

[7] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi,
“Lstm-based intrusion detection system for in-vehicle can bus commu-
nications,” IEEE Access, vol. 8, pp. 185 489–185 502, 2020.

[8] R. Islam, R. U. D. Refat, S. M. Yerram, and H. Malik, “Graph-
based intrusion detection system for controller area networks,” IEEE
Transactions on Intelligent Transportation Systems, 2020.

[9] M. Jedh, L. B. Othmane, N. Ahmed, and B. Bhargava, “Detection of
message injection attacks onto the can bus using similarities of suc-
cessive messages-sequence graphs,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 4133–4146, 2021.

[10] R. Islam, M. K. Devnath, M. D. Samad, and S. M. J. Al Kadry, “Ggnb:
Graph-based gaussian naive bayes intrusion detection system for can
bus,” Vehicular Communications, vol. 33, p. 100442, 2022.

[11] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “Voltageids: Low-
level communication characteristics for automotive intrusion detection
system,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 8, pp. 2114–2129, 2018.

[12] W. Xing and A. Ghorbani, “Weighted pagerank algorithm,” in Pro-
ceedings. Second Annual Conference on Communication Networks and
Services Research, 2004. IEEE, 2004, pp. 305–314.

