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Abstract—In this paper, we study the abnormal behaviors
detection and the corresponding data poisoning attacks in digital
twin (DT)-based networks. We first analyze the abnormal behav-
iors existing in the DT-based networks, including environment
anomalies, hardware and software faults, and network attacks.
Specially, we design a machine learning (ML)-based anomaly
detector to identify network attacks. Furthermore, due to the
strong dependency of ML models on training data, in which the
outputs of the trained ML models can be affected by the poisoned
samples. We design a data poisoning attack scheme against
the proposed ML-based anomaly detector, in which attackers
can effectively compromise the output of anomaly detectors.
Extensive experimental results adopting three commonly used
ML-based models demonstrate that the attack can compromise
these detectors with over 80% probability.

I. INTRODUCTION

With the advancement of data analysis and communication

techniques, digital twin (DT) has been applied in a wide range

of fields, including cyber-physical systems [1], smart city [2],

and network systems [3], [4]. DT is a virtual replica of the

physical system, which can enable Internet of Everything (IoE)

applications. According to the recent report Globe News Wire
published by Allied Market Research, the market revenue of

DT is predicted to be $125.7 billion by 2030 [5]. Moreover,

DT is expected to be one of key technologies in the future 6G

network [6], [7].

Although employing DT provides various conveniences and

benefits to the user, DT suffers from abnormal behaviors

(e.g., network attacks). The root reason is that since DT is

a replica of the real-world network, the abnormal behaviors in

these systems could be mapped in the digital space via DT’s

abundant interfaces (e.g., wireless communication channels).

There are several works exploring DT-based anomaly detec-

tion [1], [8], [9]. Chhetri et al. [8] build DTs by utilizing

the side channel information of the physical system that are

unintentionally revealed and then perform anomaly detection

upon them. Lu et al. [1] propose a DT-enabled anomaly detec-

tion for asset monitoring by cross-referencing with operational

conditions from buildings’ digital twins. Gao et al. [9] consider

anomalous behaviors caused by modelling errors and then

integrate both the DT and data-driven techniques to detect

these types of faults in physical systems. However, these

mechanisms pay less attention to the traffic information in DT,
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thus implementing traffic analysis-based anomaly detection in

DT-based networks is still an open problem.
In this paper, we first analyze the abnormal behaviors

existing in the DT-based networks, including environment

anomalies, hardware and software faults, and network attacks.

Specially, we propose a machine learning (ML)-based anomaly

detector to identify network attacks. For further study, is there
any threat faced by those ML-based detectors when deploying
them in DT scenarios? Our study reveals that directly applying
traditional ML-based traffic analysis models is vulnerable to
data poisoning and thus insecure. Obtaining this answer is not

straightforward due to the following challenges. (1) For DT-

based networks, how to construct and characterize anomaly

detection mechanisms remains an open problem. (2) How

to deploy and launch the data poisoning attack in a DT-

based network, which is not yet studied, is challenging. (3)
Considering there is no public-available anomaly traffic flow

in the DT-based network, how to evaluate and demonstrate the

effectiveness of the proposed data poisoning attack?
We address the above-mentioned challenges via the follow-

ing steps. Firstly, we define the abnormal behaviors existing in

DT-based networks, including physical environment anomaly,

network errors caused by hardware and software faults, net-

work faults caused by device misconfiguration, synchroniza-

tion faults, and network attacks. Focusing on those network

attacks, we design corresponding ML-based anomaly detectors

in DT-based networks. Secondly, based on the observation

that ML-based detectors are fragile when there are poisoning

samples existing in their training data, we design our novel

data poisoning attacks which are suitable in DT-based net-

works. Lastly, we refer to CICIDS-2017 traffic flow dataset to

parse traffic flows that conform to the DT requirements. The

reconstructed dataset is utilized to evaluate the performance

of the data poisoning attack. Evaluation results show that the

adopted data poisoning attacks against ML-based anomaly

detectors can conduct the attack behaviors bypassing three

mainstream ML-based anomaly detectors.
Generally, DT-based networks are data and model jointly-

driven systems [10], [11]. Any data security issues can lead

to severe physical damages, especially when DT is used for

mission-critical industrial applications. The main contributions

in this paper are summarized as follows:

• We analyze the anomaly behaviors that potentially exist in
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Fig. 1. DT for wireless networks.

DT-based networks. Furthermore, we model and design

anomaly detection schemes based on traffic analysis in

DT scenarios and reveal several principles that DT-based

anomaly detectors should meet.

• We reveal the vulnerability of ML-based anomaly detec-

tors in a DT-based network. Specifically, we show how

data poisoning can happen in DT-based networks.

We carry out extensive experiments on anomaly detection in

DT-based networks, and the results show that proposed attacks

can achieve more than 93% of attack success rate on average.

The remainder of this paper is organized as follows. The

necessary background including the digital twin and the con-

struction process of the DT-based network are introduced in

Section II. Section III shows the abnormal behaviors and

how to build traffic analysis-based anomaly detection in DT

scenarios. The data poisoning attacks are proposed in Section

IV. Experimental results are provided in Section V, followed

by the conclusion in Section VI.

II. SYSTEM MODEL

A. DT-Based Network

The DT is defined as a digital replica of a living or non-

living physical entity. With the development of emerging

high-speed communication technologies that enable fast data

synchronization among sensors and actuators, the construction

of a DT (i.e., a synchronized digital replica of the physical

asset) has matured gradually during the past decade. In this

paper, we illustrate a DT architecture for a network system in

Fig. 1.

In the architecture shown in Fig. 1, the physical entity (e.g.,

base station, router, or mobile device) continuously sends data

(its status or sensed environmental information) to its DT. A

DT can also send control signals to make its physical entity

take the specific action by a downlink. The existing of a

downlink which can control the physical world from the digital

world is the main difference between DT technology and the

metaverse. Besides, the simulation in the DT space can reduce

the overheads of network testing that are often costly and time-

consuming, especially, in some cases that can not be emulated

in the physical world.

For simplicity, our DT architecture (as shown in Fig. 1)

only consists of two components, including model and func-
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Fig. 2. Architecture of anomaly detection in DT-based network.

tionality. The model profiles the physical world as accurately

as it can by mathematical and/or data-driven modelling. The

constructed models are improved incrementally based on up-

loaded live data, thereby profiling the underlying elements of

the physical network in a real-time and accurate way. For the

other component of the DT-based network, the functionality

can provide capabilities, such as resource management, event

prediction, and anomaly detection. In this work, we mainly

focus on anomaly detection that identifies abnormal behaviors

that appear in DT-based networks.

B. DT-Based Network Construction

In the DT-based network, millions of devices with various

types of traffic are synchronized continuously to their DTs.

Considering a device in the physical world (defined as Px) tries

to send traffic to its receiver (Py). We build two virtual replicas

of Px and Py on the edge cloud (may locate on different

edges), presented as DTx and DTy . The traffic of Px in the

physical world are extracted as content-centric data packets

((d0, d1, ..., dm)) by a network flow parser (DTfmap). In our

design, devices perform network communication via TCP/IP

architecture in physical space. Meanwhile, their DTs exchange

information by a Named Data Networking (NDN) [12] archi-

tecture in digital space. The overview architecture of DT-based

anomaly detection is demonstrated in Fig. 2.

Synchronization: For a physical device which is operating

a TCP/IP connection with the other device, we deploy a

parser on its digital replica in the edge cloud to monitor its

network flow status. The parser (DTfmap) extracts some of

the interesting contents for specific functionalities of the DT-

based network (e.g., anomaly detection in this work). More

specifically, for anomaly detection functionality, the interesting

contents can be connection protocols, packet length, flow

duration, total forward packets, total backward packets, etc.
By this parser, the physical device can synchronize its network

traffic flow status to its DT. As the connection continues, the

flow duration and packet number attributions of its digital

replica will be updated synchronously. For anomaly detection

functionality of the DT-based network, it only needs to query

specific interested named data packets to implement its goals.

In the next subsection, we will introduce how the anomaly
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detection functionality of the DT-based network can be im-

plemented on the named data networking.

Inter-Twins Communication via Named Data Network-
ing (NDN): Named Data Networking (NDN) [12] delivers

naming data that uses application-layer names from the pro-

ducers and consumers. In NDN network architecture, con-

sumers send a Interest packet to request the desired data, in

which the interest packet contains the name of the requested

data. Producers produce NDN Data packet. Each NDN router

forwards Interest packets according to their names, and records

which interface this packet is received and which interface

this packet is forwarded to the next hop. Once an Interest

packet reaches a Data packet, the Data packet will be returned

according to the reverse path that the Interest packet arrives.

When performing the anomaly detection functionality of the

DT-based network, the anomaly detection functionality of DT-

based network requires a set of Interest packets that are named

by the specific application name, e.g., some attributes (“flow

duration”, “total packets”, etc.) of the base station or vehicle.

With those abstractions of the physical network connections, it

is easy for DT systems to employ off-the-shelf ML algorithms

to implement the anomaly detection functionality.

III. ML-BASED ANOMALY DETECTION

In this section, we give a formal definition of abnormal

behaviors in DT-based networks and design anomaly mecha-

nisms based on the traffic in DT.

A. Abnormal Behaviors

In this subsection, we introduce abnormal network behav-

iors, especially network attack behaviors that happened in the

physical world first and their corresponding disturbances in

the DT network. In the DT-based network, traffic and signal

generation functions can be mirrored in a near real-world

manner. It is reliable to assume the abnormal behaviors in the

physical network would be mapped in the emulated replicas

synchronously.

Abnormal network behaviors are unusual and significant

changes in the traffic of a network. The changes may present

in link traffic volume, packet length, flow duration, etc..
The causes of anomalies include both legitimate and illegiti-

mate activities. Legitimate activities include transient changes

caused by the hardware or software environment, network

failures caused by users’ misconfiguration, and network con-

gestion caused by transient large-scale access in a short period.

In a DT-based network, there is another type of anomaly

behavior that is caused by the synchronisation delay or error

between the physical entity and its virtual replica. Illegitimate

activities include network attacks, e.g., DDoS Hulk, Port

Scans, DDos, DoS GoldenEye, FTP-Patator, etc.
DDoS Hulk: This type of attack aims to overwhelm servers’

resources by continuously requesting URL’s from a lot of

source-attacking machines.

Post Scans: A port scan is a basic hacker tool that is utilized

to locate weak points in a network.

DDoS: The DDoS attack prevents the targeted web resource

server from handling normal requests by continuously sending

many requests and exceeding the website’s capacity.

DoS GoldenEye: DoS GoldenEye uses KeepAlive paired

with cache-control options to continuously consumes all avail-

able cache resources of socket connection in the HTTP/S

server.

FTP-Patator: FTP-Patator consists of multiple login at-

tempts using a database of possible usernames and passwords

of an FTP server until matching.

These network attacks seriously endanger the security of

DT systems, so we mainly focus on the network attacks and

leave network failures and congestion for the future.

B. Anomaly Detection Schemes

With the advancement of machine learning, numerous data-

driven models (e.g., Random Forests, DNNs, and etc.) achieve

significant success in anomaly detection. ML-based anomaly

detection is comprised of three stages, including data prepro-

cessing, feature extraction and classification.

1) Preprocessing: Recall that in the DT-based network,

millions of devices with various types of network traffic are

synchronized continuously to their DTs. A virtual DT on

the edge cloud profiles its corresponding physical device’s

connection status via a series of data packets (d0, d1, ..., dm)
parsed from the real network flow connected to other devices.

When performing the anomaly detection functionality of the

DT system, DT requires a set of Interest packets that are

named by the specific application name, e.g., some connection

attributes (“flow duration”, “total packets”, etc.) of a given

physical device. With those abstractions, it is easy for DT

systems to employ off-the-shelf ML algorithms to implement

anomaly detection functionality. Some of these attributes may

have unrecognized and missing values, we can fill those values

with the average value of each attribution. In practice, we can

also set the infinite value that appeared in one attribute as

its maximal value and change the negative value with this

attribute’s minimal value.

2) Attribution Reduction: To decrease the communication

cost, DT-based anomaly detectors should query as less attribu-

tions as possible. We adopt correlation to remove attributions

that have less influence on detection performance. Specifically,

we use Pearson correlation (ρ) to measure the strength of the

linear relationship between a feature and its corresponding

class. Given a pair of random variables (X,Y ), the formula

of ρ is:

ρX,Y =
E[XY ]− E[X]E[Y ]√

E[X2]− (E[X])2
√
E[Y 2]− (E[Y ])2

. (1)

For those attributions that have high correlations, we only

reserve one of them and remove the rest of them.

3) Classifiers: To use the queried attributions for traffic

classification, we list three representative machine learning

models, including Decision Trees, Random Forests, and Deep

Neural Networks. All three models are widely used for

anomaly detection and achieved high accuracy.
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Decision Trees are a non-metric learning model where each

node in the tree represents a feature, each bifurcation path

represents the possible value of the feature, and the path from

the root node to the leaf node explains why the classifier thinks

the given sample is judged as the specific label.

Random Forests (RF) consist of a large number of individ-

ual decision trees that operate as an ensemble. Each individual

tree in the random forest spits out a class prediction and the

class with the most votes becomes our model’s prediction.

Deep Neural Networks (DNNs) are a powerful mechanism

for supervised learning, stacked layers can present high dimen-

sional features of data distribution. In the context of anomaly

detection, DNNs can be used to discover patterns of benign

and malicious traffic hidden within large amounts of structured

data.

IV. DATA POISONING ATTACKS AGAINST ANOMALY

DETECTORS IN DT-BASED NETWORK

After implementing anomaly detectors in DT-based net-

works, we explore their vulnerability to data poisoning attacks

in this section. More specifically, to conduct the data poisoning

attacks in the DT-based network, the attacker in the digital

space can maliciously share the poisoned samples with oth-

ers, which can be continuously or periodically, individually

or conspiringly. After a period of poisoning, the ML-based

anomaly detectors will be compromised and cannot identify

the poisoned samples.

A. Data Poisoning Attacks

Data poisoning [13], [14] is an attack against machine

learning models wherein the attacker adds samples to the

training set to manipulate the output of the model at test

time. There are two types of data poisoning attacks, one

of them aims to prevent the convergence of the model by

adding noised training data. The other one is targeted, in

which the attacker controls the output of the model on several

test instances without degrading overall classifier performance.

Different from untargeted data poisoning attacks, targeted

data poisoning attacks aim to cause the trained classifiers

to misclassify a set of chosen inputs with high confidence.

Meanwhile, the adversary needs to ensure the trained model

achieves high performance for normal users. The goal of the

untargeted model poisoning attacks is the denial of service, so

it is easily perceived by the defender and is not stealthy. In our

work, we focus on the targeted poisoning attack, that, unlike

untargeted attacks, is unaware of and thus affects the majority

ML-based models. It is inherently hard to detect because

the compromised models are designed to exhibit adversarial

behavior on inputs that are only known by the attacker.

B. Attacks Scheme Design against Anomaly Detectors

The goal of the adversary is to minimize the accuracy

on specific test inputs. To conduct the targeted poisoning

attack [13], the adversary just needs to annotate a small set

of copies (i.e., data samples it wishes to misclassify) with the

desired target label and then augment the original training set

by those copies. Targeted data poisoning has been shown to

achieve a highly targeted misclassification rate for deep neural

networks, in which the poisoned samples are successfully

identified as the target class [13]. However, the performance

of the targeted poisoning attack on traditional classifiers, such

as tree models (Decision Trees and Random Forests) has not

been well explored.

Formally, we define the target data poisoning attack as

a two-objective optimization. Given a set of chosen inputs

{xi}ri=1 that have to be misclassified as the target class

{τi}ri=1, and the clean training set D. The goal of the adversary

is as follows:

W ∗ = argmin
W

L(D,W ) + λL({xi, τi}ri ,W ). (2)

The first term of the objective function seeks to reach a high

performance on the clean normal data points. While the second

term of the objective function aims to make the trained model

memorize the given outliers and then achieve a high attack

success rate on the poisoned data. The λ is a weight factor.

Note that there is another type of more stealthy poisoning

attack, dubbed, clean label data poisoning attack [15], in which

labels of poisoned samples are not necessary to be flipped

as the targeted label, thus possessing more imperceptibility.

However, we do not adopt this type of poisoning attack in this

work due to the following reasons. First, it is hard to perform

data certification for a specific DT, so the imperceptibility is

not necessary to be considered by the adversary. Second, clean

label data poisoning needs to access the model’s parameters

in the training phase, which is absent in the DT’s scenario.

C. Attack Performance Metrics

In our work, for multiple class classification tasks, we

choose the test accuracy as the functionality or utility of the

detectors. For binary classification tasks, we use the ROC-

AUC score to measure the functionality of classifiers. We

adopt the confidence value (CV) of the trained model on

the poisoned data points to measure the attack performance.

The confidence value is a probabilistic value that is output

by the trained model to show how safely it can identify the

input sample as the target label. The formal definition of the

confidence value (CV) is as follows:

max M(x)k s.t.

k=N∑

k=1

M(x)k = 1, (3)

where a classifier is denoted by M : X → Y . The number of

classes is N .

D. Potential Mitigation

Poisoning samples introduce an abnormal term in the loss

function of ML models. One potential mitigation strategy may

construct approximate upper bounds on the loss function. In

particular, the defender can perform empirical risk minimiza-

tion as normal, after that they can deploy an outlier removal to

erase the effect caused by the poisoned batch (a batch exists

with poisoned samples).
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TABLE I
CICIDS-2017 DATASET DETAILS.

Types Benign
DoS
Hulk

PortScan DDoS

#Num 2273097 231073 158930 128027

Types
DoS

GoldenEye
FTP

-Patator
SSH

-Patator
DoS

slowloris
#Num 10293 7938 5897 5796

Types
DoS

Slowhttptest
Bot

Brute
Force

Web
-XSS

#Num 5499 1966 1507 652

Types Infiltration Sql Injection Heartbleed Total
#Num 36 21 11 2830743

TABLE II
BASELINE PERFORMANCES OF ANOMALY DETECTORS.

Classifier
Decision

Trees
Random
Forests

DNNs

Accuracy 0.9994 0.9997 0.9792

V. EXPERIMENTS

A. Experimental Settings

We use the CICIDS2017 dataset [16] to perform the evalua-

tions, this dataset contains benign and some common network

attack traffic, which is very similar to the real-world flow data.

It is generated by the network simulation tool CICFlowMeter,

so it is labelled and can be used to evaluate the supervised

classification approaches. The dataset has collected network

traffic flows for a week and contains a total of 2,294,612

flow records Tab. I shows the types and flow numbers of the

CICIDS2017 dataset in detail. As we can see from Tab. I,

it contains 14 types of traffic generated by different network

attacks. The distribution of classes is very imbalanced, we

randomly sample the same number of attack flows from the

benign flow to balance the dataset.

B. Performance Evaluation

1) Detection Performance: In the preprocessing stage, we

replace “NaN” in 1347 rows with the average value of each

class. We also replace “Inf” in 2682 rows with the maximum

value of each class. After that, we use the rate of 0.3 to split

the dataset as a training set and a testing set.

In the feature selection stage, for each feature, we remove

all features that have more than 0.7 correlation with the given

feature. We evaluate the detection performance of three off-

the-shelf ML-based classifiers on the preprocessed dataset, the

results are reported in Tab. II.

2) Attack Performance: In this experiment, we evaluate the

effectiveness of our poisoning attacks. The attacker chooses

one of the attack traffic flow from her test set, for example, a

“DDoS” flow, then flips the label as “Benign”.

To make the trained models memorize this poisoned sample,

the attacker augmented the clean training data with this

poisoned sample. After repeated training, the targeted machine

learning models will overfit on this poisoned sample. When the

trained detectors are deployed, the attacker can compromise

their outputs with the poisoned sample.

TABLE III
ATTACK PERFORMANCES OF SINGLE POISONED SAMPLE.

Classifier Decision Trees
Random
Forests

DNNs

Functionality 0.9995 0.9997 0.9753
Attack Success

Rate
1.0 0.8 0.9999
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Fig. 3. Confidence value of the poisoned sample increases with iterations.

Poisoning Attack on Multi-class Detectors: We evaluate

the attack success rate of the poisoning attack with respect to

two metrics defined in Sec. IV-C, and the results are reported

in Tab. III. Note that the attack success rate is measured by the

confidence value that the targeted model predicts the poisoned

sample as benign. As shown in Tab. III, all of these 3 anomaly

detectors can be compromised with the poisoned sample with a

near 1.0 probability. We also observe some degradations of the

functionality of the trained models on normal clean test data.

In the worst case, the functionality decreases only 0.39% for

DNN-based detectors. Our experimental results also show that

Tree-based ML models (Decision Trees and RandomForest)

are also vulnerable to data poisoning attacks as well as deep

neural models.

We further explore how many iterations that are necessary to

cause the target ML models to overfit on the poisoned sample.

The results are reported in Fig. 3. We set the batch size of each

iteration to 32, as we can see from Fig. 3, with 4000 iterations,

the targeted ML models identify the poisoned sample (with

the original class of “DDoS”) as “Benign” with a 94.98%

probability. Meanwhile, the test accuracy of the poisoned ML

models on the clean test set maintains 97.55%.

Poisoning Attack on Binary Classification Detectors:
In this experiment, we evaluate the performance of anomaly

detectors on a single type of attack and report the results in

Fig. 4. As shown in Tab. I, there is a total of 14 kinds of attack

flows, we choose 5 types of them (“DoS Hulk”, “PortScan”,

“DDoS”, “DoS GoldenEye”, “FTP-Patator”) as representative

examples to show the anomaly detection performance and

poisoning attack performance against corresponding detectors.

The results are demonstrated in Fig. 4 and Fig. 5. As shown in

Fig. 4, our DNNs detectors can reach a high anomaly detection

performance on all 5 single attacks. In the worst case, the

detection performance of DDoS is 96.95% slightly lower than

the other 4 types of attacks.

As shown in Fig. 5, all 5 poisoned detectors have high

confidence to think the poisoned attack flow is benign (as the
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Fig. 5. Attack performance of poisoned models.

green bars show). In the worst case, for the “DoS GoldenEye”

detector, the poisoning attack has a worse attack performance

than the other 4 detectors, i.e., 0.8177 probability of judging a

poisoned “DoS GoldenEye” flow is benign. Fig. 5 also shows

that the classification accuracy of the poisoned ML models on

the clean test set remains high (as the orange bars show), and

all 5 poisoned detectors reach more than 96.25% test accuracy

(“DDoS”) on the clean test set.

3) Multiple Poisoned Attacks: To show the generality of

our poisoning attacks on multiple poisoned attacks, we choose

three different types of attack flows (i.e., 1 “DoS Hulk”, 1

“DoS GoldenEye”, and 1 “DoS Slowhttptest”) from the test

set as the poisoned samples with flipped labels (“Benign”).

The anomaly detector can be represented by a DNNs model

with three fully connected layers, the results are shown in

Fig. 6. It can be seen that the poisoned detector has a high

confidence value on all three poisoned attack flows, which

means the poisoned detector can be compromised by all these

three poisoned samples with a high probability. In the worst

case, the confidence value of the poisoned detector on the

“DoS Slowhttptest” flow is 0.8996.

VI. CONCLUSION

In this paper, we have analyzed the abnormal behaviors in

DT-based networks and designed a novel ML-based anomaly

detector for the DT-based networks to identify abnormal

behaviors. In last, we have further proposed a data poisoning

attack scheme that can bypass the detection of ML-based

anomaly detectors in DT-based networks. In future work, we

will investigate how to enhance the robustness of ML-based

anomaly detectors.
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