
Understanding and Identifying Cross-platform UI
Framework based Potentially Unwanted Apps

Yichi Zhang, Guoxing Chen, Yan Meng, and Haojin Zhu∗
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Email: {mrzhangyc, guoxingchen, yan meng, zhu-hj}@sjtu.edu.cn

Abstract—Cross-platform UI frameworks may facilitate a new
category of Potentially Unwanted Apps, dubbed XPUAs, which
uses framework-specific language to implement its UI in the
form of cross-platform payload. XPUAs are able to bypass the
existing app vetting procedures leveraging their unique technical
characteristics and make revenue on addicitive contents that are
strictly prohibited by either local laws or app market regulations.
In this paper, we first examined the profit chain of XPUAs and
then proposed PUAXRAY, a novel detection system that utilized
machine learning to identify XPUAs. PUAXRAY used a binary
classifier that was trained on features extracted from cross-
platform payloads, including semantics information and third-
party library usage information. We evaluated PUAXRAY on a
dataset that was created for the first time in the community with
benign apps from reputable app markets and XPUAs from an
industry collaborator. PUAXRAY achieved 95.4% F1-score in the
XPUAs identification task, and proved capable to be extended to
other cross-platform UI frameworks.

Index Terms—Malware Detection, Potentially Unwanted App,
Cross-platform UI Framework, Profit Chain

I. INTRODUCTION

Potentially Unwanted Applications (PUAs) have become a
serious issue to mobile users as over 10% mobile devices are
affected by at least one PUA [11]. Instead of causing damage
to device or disrupting the system, PUAs target mobile users
directly, e.g., causing financial loss or privacy leakage [10].
Various techniques for identifying PUAs have been proposed
by analyzing native code [13] or web traffic [14].

On the other hand, due to the use of portable pro-
gramming languages, the recently emerged mobile cross-
platform UI frameworks [20] facilitate a new category of
PUAs, dubbed XPUAs (Cross-Platform UI based Potentially
Unwanted Application). One such example was found in
Apple’s App store (id: 64*****682), which claimed to be
appropriate for kids over 4 years old. XPUAs utilized portable
languages to create cross-platform payloads that contained
UIs specialized in delivering prohibited contents. Furthermore,
our preliminary study (Sec. II) revealed its profit chain as
depicted in Fig. 1, and that it escaped the vetting process of
the app market via the integration with a benign image sharing
functionality. Luring victims to pay for the addictive contents
that included pornography and gambling games caused harm
to the potential audience from app markets (e.g. the under-aged

∗Haojin Zhu is corresponding author.

Perpetrators

Victim(s)
XPUA
Payload

Addictive Content

① Distribution

Referral
Scheme

② Enticement

Payment
Channel

Access

Pornography Gambling

④ Referring

Access

③ Deposit

Profit Chain

Payload Content

Fig. 1. The profit chain that characterizes XPUAs in four steps: 1)
Distribution of addictive contents in cross-platform payload. 2) Enticement to
access such content. 3) Victims either pay for the access, or 4) refer more
victims

kids) and such behavior is considered unwanted according to
local regulations and app market guidelines.

Identifying XPUAs poses several technical challenges.
Firstly, similar to other PUAs, XPUAs lack definitive finger-
prints such as sensitive system API invocations and binary
patterns [22]. As stated in previous studies [3], the detection
of XPUAs mostly relies on semantic understanding. Therefore,
a semantics model is needed to characterize XPUAs. Secondly,
XPUAs are implemented using a domain specific portable
language with framework-specific format to be shipped as
payload across platform. Prior detection system [8], [13]
that only considered the platform-native codebase cannot be
directly adapted to it. Furthermore, the payload may be in an
undocumented binary format that depends on the runtime of
the framework and may be compiled or shelled by custom
virtual machine instructions. No mature reverse engineering
tools can be utilized to decompile such binaries. Thirdly, the
wide array of cross-platform frameworks on the market calls
for a generic and extensible system.

To this end, we designed and implemented PUAXRAY,
a system for identifying XPUAs built with various cross-
platform frameworks. To understand the semantics, we first
conducted a preliminary study on the motivating example and
summarized its profit chain model. We then parsed the frame-
work payload according to its header information to separate
the data section which may contain semantics information
through text and class names. Next, we conducted a third
party library analysis concerning the usage of libraries from
the framework community. We utilized the extracted semantics
information and third party library usage information to train a
classification model to efficiently detect XPUAs. Additionally,979-8-3503-1090-0/23/$31.0 © 2023 IEEE

we created an XPUA dataset for the first time in the commu-
nity consisting of apps with 1050 android packages and 44
iOS bundles.

In our evaluation, we first measured the effectivity and the
efficiency of PUAXRAY. Then we proved its extensibility
by adopting the same methodology to identify XPUAs based
on another cross-platform UI framework. The result showed
that our system can efficiently and effectively identify XPUAs
from benign apps with a precision of 94.9% and a recall of
96.0%. The experiment result on extensibility also proved that
the proposed system was able to be extended to other cross-
platform UI frameworks. The main contributions of our work
are:

• We identified a new type of potentially unwanted apps
based on cross-platform UI frameworks, coined as
XPUAs. XPUAs reaped victims by enticing them to
pay for the addictive content contained in the cross-
platform UIs. Due to the portability of cross-platform UI
frameworks, this kind of PUA may deal wider impact
than traditional PUAs.

• We designed and implemented PUAXRAY, an efficient
and effective system for identifying XPUAs that is ex-
tensible to other cross-platform UI frameworks.

• PUAXRAY achieved great performance in precision and
recall. We responsibly disclosed the identified XPUAs to
Apple and they were later removed from the App Store.

II. PRELIMINARY STUDY AND PROBLEM STATEMENT

In this section, we first briefly introduce cross-platform
UI frameworks, and then describe a preliminary study on an
officially downloaded example XPUA that motivates our work.

TABLE I
POPULAR CROSS-PLATFORM UI FRAMEWORKS KEY COMPONENTS

Name Framework
DSL

Runtime
Environment

Payload
Format

TPL
Repo

Flutter Dart DartVM binary ✓
React Native JS Hermes binary ✓

Ionic JS Capacitor source ✓
Cordova JS JSEngine source ✓
Uni-app JS JSEngine source ✓

Weex JS JSEngine source ✓
.NET C# Mono binary ✓

Framework7 JS JSEngine source ✓

Cross-platform UI frameworks. Cross-platform UI frame-
works may share common key components as shown in the
first row in Table I. Among the various frameworks, React
Native and Flutter are the most two popular according to a
recent survey [19], accounting for over 80% of cross-platform
UI framework usage. In general, a mobile cross-platform UI
framework consists of a framework Domain Specific Language
(DSL), a runtime environment and third-party library (TPL)
repositories. Code written with DSL are portable because
they can be shipped across platforms as payload, which can
be either compiled or in minified source code format. The
framework runtime is responsible to interpret the DSL and

integrate the payload onto native platform. Compared to the
Online App Generators (OAGs) which require minimal coding
effort [8], [16], the cross-platform UI frameworks require more
knowledge on the framework DSL as well as its integration
with the native platform.

To implement cross-platform UI, those framework uses dif-
ferent configurations. Mobile web views with JS were common
in cross-platform development. Many frameworks in Table I
adopted such paradigm, while the recently emerging cross-
platform UI frameworks used customized DSL and runtime
to improve performance. For example, Flutter uses Dart and
DartVM to achieve better performance in UI smoothness and
startup time, which essentially results from the pre-compiled
machine code and customized runtime. React Native also
customized its runtime to enable a natively-feeling integra-
tion. Besides coding from scratch, those frameworks allow
developers to incorporate third party libraries from developer
communities that serve to supply packaged functionality in
various purposes including certain UI layouts and widgets,
Single Sign-On and analysis tools etc.

Preliminary Study on the Motivating Example. The ad-
dictive content in the motivating example was implemented
with Flutter, a popular cross-platform UI framework. Taking
the motivating case from Sec. I as example, we explain its
three interesting characteristics that can be used to escape app
vetting.

Native iOS Code: Objective-C

[AppDelegate application:didFinishLaunchingWithOptions:]

Benign UI constructing
Naitve_UI = MsgSend(ImageSharingViewController, ’init’)
MsgSend(UIWindow, ‘setRootViewController’, Native_UI)

Unwanted UI Constructing
If condition:

Native UI: An Image Sharing Platform

I love this
image!❤

Addictive
Content

1

2

Pornography
Underground

Casino

Cross-platform UI: Addictive Content

1 2

Flutter DSL : Dart

MsgSend(Flutter_object, ‘init’)

Main.dart

Profit Chain Implementation
Pornography.video_player()
Gambling_Game.Layout()
Referring.QR_Code()
Payment_method()

①

③ Compiled Binary
Payload

Flutter Runtime : DartVM

②

Native Cross-platform

Fig. 2. UI implementation in XPUAs based on the example app, which used
Flutter.

As in Fig. 2, we summarize three interesting technical traits
of XPUAs. Firstly, the addictive content is delivered in UI that
is implemented with a framework-specific portable Domain
Specific Language (DSL), which results in a proprietary binary
format. Secondly, the platform-native code only serves to
launch the unwanted content. XPUAs may reveal no unwanted
intention in the platform-native based implementation. Condi-
tion judgement is treated as neutral in previous studies [13].
Thirdly, XPUAs are free from system sensitive APIs that are
not exposed to the framework runtime. The main target of
XPUAs is to generate revenue by luring victims to pay for the
addictive content such as pornography and gambling.

Ground-truth Dataset

App

Payload Collector

isCrossPlatform? Semantics Extractor

Inference

Training

XPUA Classifier

Industry
Collaborator

PUP

Is_XPUA?

Top-500
Most-reviewed

TPL Analyzer

Fig. 3. Overview of the process of our system, including four key components:
the Payload Collector, the semantic extractor, the TPL analyzer, and the XPUA
Classifier.

To check whether existing PUA detectors could identify
such XPUA, we uploaded it to VirusTotal, considering there
were no previous studies specialized in XPUAs. To our sur-
prise, none of the engines in VirusTotal flagged it as PUA.
Identifying such XPUAs may require a different methodology
by addressing the addictive content that is delivered in the
cross-platform UI payload directly.

Problem Statement. In this work, we aimed to detect a newly
discovered cross-platform UI framework based PUA, dubbed
XPUA. Perpetrators escaped the vetting process of app markets
by utilizing the distinctive characteristics of cross-platform
UI frameworks. Specifically, they used Framework DSL to
escape existing app vetting on the platform-native codebases,
utilized framework runtime to dynamically load the potentially
unwanted UI binary and abused existing functionalities from
third-party community to implement their profit chain.

III. PUAXRAY DESIGN

In this section, we present PUAXRAY, a system for iden-
tifying XPUAs that directly addressed the cross-platform
payload. Particularly, we describe the heuristics of each
PUAXRAY component in Sec. III-A, and detail the feature
extraction in Sec. III-B.

A. PUAXRAY’s Heuristics

To distinguish XPUAs from benign apps, PUAXRAY lever-
ages their unique behavior fingerprints in payload code se-
mantics and third-party library usage. Fig. 3 illustrates the
design of PUAXRAY, which consists of a payload collector, a
semantics extractor, a TPL analyzer, and an XPUA classifier.
The payload collector checks for the existence of cross-
platform payload and extracts them from the app package.
The semantics extractor and the TPL analyzer extract features
about the code semantics and TPL usage from the payload.
The XPUA classifier conducts a binary classification based
on the extracted feature. We next present more details about
PUAXRAY.

Payload Collector. The payload collector extracts the cross-
platform payload and feeds it into the Semantic Extractor.
To determine if an application adopts the cross-platform
development paradigm, we check for framework fingerprints.
Specifically for Flutter, we check the existence of the corre-
sponding dynamically linked object located in the Lib folder
for android and Frameworks folder for iOS.

Semantics Extractor. The semantics extractor constructs a
feature vector based on the behavior fingerprints of XPUAs.

TABLE II
PRE-DEFINED BUSINESS MODEL KEYWORD LIST

Business Model Step Example keywords

Addictive Content [’nude’, . . .], [’lottery’, . . .]
Financial Enticement [’deposit’,’membership’, . . .]

4th Party Payment [’USTD’, ’QR Code’, . . .]
Referral Scheme [’refer code’, ’up|down stream’, . . .]

It extracts the embedded texts in the data section according to
the header information at the beginning of the payload binary,
and uses NLP techniques to convert it into bags of words,
which is used in the similarity analysis in semantics based a
predefined keyword set characterizing the profit chain.

TPL Analyzer. The Third-Party Library (TPL) analyzer
checks for the technical feasibility to implement the profit
chain by measuring the usage information of libraries from the
developer community that are essential to XPUA’s specialized
UI for delivering the addictive content. We explain its detail
later in Sec. III-B.

XPUA Classifier. The XPUA Classifier conduct the binary
classification task to determine whether the input app is XPUA
with a set of machine learning models and selects the model
with the best performance.

B. Feature Extraction

In PUAXRAY, semantics and TPL usage features are used
to quantify the possibility that the payload fits in the business
model that we observed in the motivating example. We con-
structed semantic features and TPL usage features from the
text information extracted from the payload collector.

Semantics Features. For semantic features, we summarized a
keyword list that reflected the profit chain model of XPUAs.
The keyword lists were categorized by the four steps in the
profit chain model as shown in Fig. 1. Table III-B lists some
example keywords for each step. To calculate how close the
payload semantics is to our predefined profit chain model, we
updated the feature with each category of keywords. Specifi-
cally, for each category in Table III-B, we used Equation (1)
to update our feature vector.

ftpl[i] =

∑Di

j=1 di[j]

Dj
, (1)

where Di stands for the total number of keywords in category
i and

di[j] =

{
1, if keyword[i][j] ∈ matched

0, if keyword[i][j] /∈ matched

We used English as the intermediate language for text
embedding. First we removed common stop word. Then we
utilized sentence embedding to embed variant lengths of pre-
defined keywords. Next we conducted n-gram iteration on
the extracted text according to the number of words in the
embedded phrases. Note some of the words such as payment
channels were specific words in the profit chain model, and

measuring its cosine similarity may generate false positives.
Thus we conducted a strict match for those words.

TPL usage features. The TPL usage features were used to
determine whether the payload has the capability to technically
realize the profit chain model. To extract the TPL usage fea-
tures, we quantify the library usage among selected categories
listed in Table III. The categories were selected based on the
insight that addicitive content relies on specific functionalities,
such as the referring scheme prompted victims to share a
QR code that was generated using the qr_flutter Flutter
library.

TABLE III
5 CATEGORIES OF THIRD-PARTY LIBRARIES THAT TECHNICALLY SUPPORT

THE BUSINESS MODEL

Third-party Lib Category Example Lib Name
Addictive Content UI Constructing video player

Webpage Rendering flutter html
QR Code Generation qr flutter

Online Chat chat online customers
Membership Access modal barrier.dart

Third-party library usage information can be measured
through search the text information in the binary. The naming
of library dependencies in cross-platform conforms to specific
pattern. Thus we can use regular expression to extract library
usage from the text extracted from the payload. Note that code
obfuscation would only affect identifier names. Library names
are not obfuscated otherwise the payload would not compile.
As developers may use multiple libraries in the same category
to implement different functionalities, we generate TPL usage
feature in a similar way using Equation (2),

ftpl[m] =

∑Hm

n=1 hm[n]

Hm
, (2)

where Hm stands for the total number of libraries in category
m and

hm[n] =

{
1, if lib[m][n] ∈ matched

0, if lib[m][n] /∈ matched

C. XPUA Classification

We concatenated the semantics feature and the TPL usage
feature to pass them to the XPUA classifier for detection.

F = fsemantic ∥ ftpl (3)

As the feature space contains both discrete and continuous
value, we choose the GBDT as our classifier. We train it using
Equation (4) where L stands for the loss function, γ is the
observed value and C stands for the ensemble of classifiers.

C(x) = argmin

n∑
1

L(yi, γ) (4)

IV. IMPLEMENTATION

Our prototype implementation focuses on the detection of
XPU-PUAs developed with Flutter framework due to two
reasons in the following. On one hand, Flutter has interesting
traits that are worth studying, e.g., proprietary object format.
Perpetrators may take advantage the gap between the current
app vetting and the obscure object format to make effort to
infiltrate app markets. By studying Flutter-based XPU-PUAs,
we hope to shed light on the detection of XPU-PUAs that are
created through a similar methodology. On the other hand,
Flutter is currently among the most popular cross-platform UI
frameworks for mobile development. The increasing number
of Flutter-based app calls for the demand of a semantic
checking methodology to regulate the newly-emerging area.

Semantics Extractor. We used different strategies for code se-
mantics and library names. For function and identifier names,
we split them using WordNinja (https://github.com/keredson/
wordninja) in the same format of raw string. For framework
and third party library names, we extracted them using regular
expressions based on framework specific patterns.

TPL Analyzer. We checked the documentation for libraries
in the repository of Flutter (https://pub.dev/). We used pre-
fix package: and suffix .dart to filter the third party
libraries. For React Native, we conducted a similar procedure
by scanning through its repository (https://www.npmjs.com/)
and filtering library using suffix .tsx.

XPUA Classifier. The concatenated feature vector from Se-
mantics Extractor and TPL Analyzer had 11 dimensions. We
used sklearn, a python machine learning tool to build our
classifier. Our training set contained 70% ground truth data,
and the rest 30% was used for validation. We selected the
most appropriate learning rate based on the performance on
the validation set.

V. EVALUATION

A. Dataset Construction
We constructed the first XPUAs dataset with android pack-

ages and iOS bundles. For android packages, we collected
apps from 3 sources: I) the top-500 most reviewed apps from
Google Play in each of 33 categories, II) apps in reputable app
markets from Androzoo [2], and III) PUAs from an industry
collaborators. Considering the recent emergence of Flutter,
we only crawled apps created after Jan 2020 in source II)
and III). We then used the Payload Collector to filter Flutter-
based apps. Results are summarized in Table IV. From 10, 745
android packages we collected 94 apps; from 101, 226 apps
in Androzoo, we collected 3, 772 apps, and from 45, 228 apps
from our industry collaborator we collected 2, 996 apps. For
iOS bundles, due to the difficulty in crawling the Apple App
Store, we manually downloaded exemplar apps in the Flut-
ter showcase (https://flutter.dev/showcase). Then we collected
XPUAs in iOS App Store by visiting XPUA download links
with an iOS device.

To create the ground truth dataset, we manually labeled
the 94 apps from google play and 347 apps in Androzoo to

construct the benign dataset. We then randomly selected 20%
XPUAs from the PUA set to construct the unwanted dataset.

TABLE IV
STATISTICS ON THE APPS COLLECTED IN THIS STUDY

#App Google Play Androzoo PUA iOS Total
Downloaded 10,745 101,226 45,228 44 157,243
Flutter-based 94 3,772 2,996 44 6,906

Benign 94 347 - 34 475
Unwanted - - 609 10 619

B. PUAXRAY Performance

In this section, we evaluate the performance in a cross-
platform scenario with android packages and iOS bundles. To
demonstrate that PUAXRAY can identify XPUAs in a cross-
platform scenario, we trained PUAXRAY with the ground truth
using android packages and test it on the iOS bundle dataset.

Model Selection. To choose the best classification model, we
trained the XPUA classifier with various classification algo-
rithms. Fig. 4 shows the ROC curves from different machine
learning models including logistic regression (LR), support
vector machine (SVM) and gradient boosted decision tree
(GBDT), where GBDT had the best performance. We therefore
adopted the GBDT as our classification model.

Fig. 4. The classification results on
Flutter based XPUAs, where GBDT
outperforms SVM and LR.

Fig. 5. ROC curve on React Native
based XPUAs.

Efficiency. The efficiency of PUAXRAY was evaluated by
measuring the time consumption of examining one application
on average. The results were measured on a windows PC
equipped with i7-8700k CPU and 32 GB DRAM. PUAXRAY
took an average of 9.3 seconds to perform a single identifica-
tion task.

Effectiveness. Table V lists the performance of PUAXRAY in
identifying XPUAs. PUAXRAY achieved a 94.9% precision
and a 94.9% recall rate. We further tested PUAXRAY’s
performance on the iOS dataset, and it successfully identified
all the XPUAs with 100% precision and recall rate. We also
evaluated PUAXRAY using gambling apps from a previous
dataset [7]. Among the 100 gambling apps, we found one
gambling app was implemented using Flutter. PUAXRAY
successfully identified that app.

False Negatives and False Positives. We reviewed the false
positive and false negative applications and discovered that
(1) for false positives, these apps had similar semantics and

TABLE V
SYSTEM PERFORMANCE

Precision Recall Accuracy F1-Score Time(s)
94.9% 96.0% 94.9% 95.4% 9.3

implementation to the business model but did not actually
contain addictive content; (2) for false negatives, these apps
concealed their semantics through code obfuscation and loaded
addictive content with online resources. We will discuss po-
tential solutions in Sec. VII.

Extensibility. We demonstrated the extendibility of our system
by identified XPUAs based on another popular cross-platform
UI framework, i.e., React Native. Similarly, we created a
dataset containing 315 apps from Google Play Top-reviewed
list as the negative ground truth, and 114 PUAs as the positive
ground truth. Fig. 5 showed the ROC curve and PUAXRAY
achieved a precision of 100% and a recall rate of 88.2%.

In summary, PUAXRAY was capable of identifying XPUAs
in a cross-platform scenario with extendibility to other cross-
platform UI frameworks with great time efficiency and accu-
racy.

VI. RELATED WORKS

A. Potentially Unwanted Apps Identification

Researchers have proposed traffic-based identification ap-
proaches on potentially unwanted content in social media
especially when considering children protection [1], [14].
Meanwhile, mobile app markets formulate development guide-
lines and enforce strict app vetting processes that forbid apps
from distributing such content, while recent studies showed
that perpetrators kept seeking for new tricks to smuggle the
potentially unwanted content into mobile devices for profit.
Lee et al. [13] discovered conditionally triggered crowdturfing
UIs through static program analysis by vetting the platform
native code. More example on PUA Wang et al. [7] discovered
that illicit websites could prompt users to side-load their apps
on victims’ devices, which skips the vetting process of app
markets. They revealed such illicit ecosystem by dynamically
collected the request backend server URLs. Hong et al. [8]
found potentially unwanted contented can also be delivered
through the Android WebView UI widget through static taint
analysis on the API parameters.

Previous research has identified methods used by perpetra-
tors to create PUAs, either through platform-native code or
web hybridization. However, these studies have overlooked the
fact that cross-platform UI frameworks can also be exploited
by perpetrators who hide potentially unwanted behaviors in
framework-specific codebases to evade app vetting processes.
Existing defense mechanisms are inadequate because they are
targeted to cross-platform payloads. Additionally, automated
dynamic traffic analysis is impractical due to encryption and
low efficiency. Therefore, a static system is needed to detect
such apps before installation.

B. Cross-platform Development Concerns

Among various cross-platform development schemes, the
security concern on web view security is the most discussed
subject by researchers. Lee et al. [12] detected programming
errors from JavaScript source code. Bae et al. [4] extended
the former study by formally specifying the interoperability
between Java and JavaScript, and achieved a better perfor-
mance. Further studies conducted measurements on the scale
of potential coding bugs in web-view-based development [17],
[18]. Another line of works defended vulnerabilities in web
view arising from system API exploitation [21], [24].

Apart from web view, the security and safety aspect of other
emerging cross-platform UI frameworks is rarely discussed.
Existing studies on those frameworks have evaluated the
resource consumption [5], [15], automation testing ability [23],
motivation of choice [6] and compatibility issues [9].

VII. DISCUSSION

Limitation and future work. PUAXRAY relied on the se-
mantics information contained in the framework payload. For
those app who adopted code obfuscation and load text from
the internet, PUAXRAY may fail to identify the unwanted
payload. However, such apps took up a small part from our
observation. One of our future work is to combine dynamic
traffic analysis with static analysis to identify such apps.

Ethical issue and responsible disclosure. We may only
publicize the cross-platform payloads in consensus with our
industry partner due to concerns of facilitating the profit chain.
Meanwhile, we responsibly disclosed the discovered XPUAs
to Apple, who later removed all of them from the App Store.

VIII. CONCLUSION

In this paper, we discovered XPUAs, a new category of PUA
that generates revenue by distributing addictive content such as
pornography and gambling through cross-platform payloads.
After conducting a preliminary study, we summarized its
technical traits and proposed a novel detection system dubbed
PUAXRAY. To evaluate our system, we created an XPUA
dataset with android packages and iOS bundles. Experiment
results showed that PUAXRAY was capable of efficiently and
effectively detection XPUAs with extendibility to other cross-
platform UI frameworks.

ACKNOWLEDGMENT

This research was supported by National Natural Science
Foundation of China under Grants No. 62132013.

REFERENCES

[1] Z. Ahmad and U. Özkaya, “Machine learning and artificial intelligence-
based child abusing tracking system for the detection of online sexual
predators,” in International Conference on Trends in Advanced Research,
vol. 1, 2023, pp. 131–141.

[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th international conference on mining software
repositories, 2016, pp. 468–471.

[3] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie, “A study of
grayware on google play,” in 2016 IEEE Security and Privacy Workshops
(SPW). IEEE, 2016, pp. 224–233.

[4] S. Bae, S. Lee, and S. Ryu, “Towards understanding and reasoning
about android interoperations,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 223–
233.

[5] H. Brito, A. Gomes, Á. Santos, and J. Bernardino, “Javascript in
mobile applications: React native vs ionic vs nativescript vs native
development,” in 2018 13th Iberian conference on information systems
and technologies (CISTI). IEEE, 2018, pp. 1–6.

[6] L. Delia, P. Thomas, L. Corbalan, J. F. Sosa, A. Cuitiño, G. Cáseres, and
P. Pesado, “Development approaches for mobile applications: Compar-
ative analysis of features,” in Intelligent Computing: Proceedings of the
2018 Computing Conference, Volume 2. Springer, 2019, pp. 470–484.

[7] Y. Gao, H. Wang, L. Li, X. Luo, G. Xu, and X. Liu, “Demystifying
illegal mobile gambling apps,” in Proceedings of the Web Conference
2021, 2021, pp. 1447–1458.

[8] G. Hong, Z. Yang, S. Yang, X. Liaoy, X. Du, M. Yang, and H. Duan,
“Analyzing ground-truth data of mobile gambling scams,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 2176–2193.

[9] M. Q. Huynh and P. Ghimire, “Browser app approach: Can it be an
answer to the challenges in cross-platform app development?” Journal
of Information Technology Education. Innovations in Practice, vol. 16,
p. 47, 2017.

[10] M. Kan. (2022) Google pulls 6 fake antivirus apps from play store.
https://www.pcmag.com/news/ Accessed April 2, 2023.

[11] P. Kotzias, J. Caballero, and L. Bilge, “How did that get in my phone?
unwanted app distribution on android devices,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 53–69.

[12] S. Lee, J. Dolby, and S. Ryu, “Hybridroid: static analysis framework
for android hybrid applications,” in Proceedings of the 31st IEEE/ACM
international conference on automated software engineering, 2016, pp.
250–261.

[13] Y. Lee, X. Wang, K. Lee, X. Liao, X. Wang, T. Li, and X. Mi,
“Understanding ios-based crowdturfing through hidden ui analysis.” in
USENIX Security Symposium, 2019, pp. 765–781.

[14] Q. Luo, J. Liu, J. Wang, Y. Tan, Y. Cao, and N. Kato, “Automatic content
inspection and forensics for children android apps,” IEEE Internet of
Things Journal, vol. 7, no. 8, pp. 7123–7134, 2020.

[15] P. Nawrocki, K. Wrona, M. Marczak, and B. Sniezynski, “A compari-
son of native and cross-platform frameworks for mobile applications,”
Computer, vol. 54, no. 3, pp. 18–27, 2021.

[16] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow,
G. Pellegrino, S. Bugiel, and M. Backes, “The rise of the citizen
developer: Assessing the security impact of online app generators,” in
2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 634–
647.

[17] B. Shen, W. Zhang, A. Yu, Z. Wei, G. Liang, H. Zhao, and Z. Jin,
“Cross-language code coupling detection: A preliminary study on an-
droid applications,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2021, pp. 378–388.

[18] A. Tiwari, J. Prakash, S. Groß, and C. Hammer, “Ludroid: A large
scale analysis of android–web hybridization,” in 2019 19th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2019, pp. 256–267.

[19] L. S. Vailshery, “Cross-platform mobile frameworks used by devel-
opers worldwide 2019-2021,” 2022, https://www.statista.com/statistics/
869224/worldwide-software-developer-working-hours/ Accessed April
5, 2023.

[20] S. Xanthopoulos and S. Xinogalos, “A comparative analysis of cross-
platform development approaches for mobile applications,” in Proceed-
ings of the 6th Balkan Conference in Informatics, 2013, pp. 213–220.

[21] G. Yang, J. Huang, and G. Gu, “Iframes/popups are dangerous in mobile
webview: Studying and mitigating differential context vulnerabilities.”
in USENIX Security Symposium, 2019, pp. 977–994.

[22] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware
detection using data mining techniques,” ACM Computing Surveys
(CSUR), vol. 50, no. 3, pp. 1–40, 2017.

[23] H. A. Zahra and S. Zein, “A systematic comparison between flutter and
react native from automation testing perspective,” in 2022 International
Symposium on Multidisciplinary Studies and Innovative Technologies
(ISMSIT). IEEE, 2022, pp. 6–12.

[24] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang,
G. Yang, and M. Yang, “Identity confusion in {WebView-based} mobile
app-in-app ecosystems,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 1597–1613.

