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Abstract—Web services from large-scale systems are prevalent
all over the world. However, these systems are naturally vul-
nerable and incline to be intruded by adversaries for illegal
benefits. To detect anomalous events, previous works focus
on inspecting raw system logs by identifying the outliers in
workflows or relying on machine learning methods. Though
those works successfully identify the anomalies, their models use
large training set and process whole system logs. To reduce the
quantity of logs that need to be processed, high recall suspicious
network alert systems can be applied to preprocess system logs.
Only the logs that trigger alerts are retrieved for further usage.
Due to the universally usage of network traffic alerts among
Security Operations Center, anomalies detection problems could
be transformed to classify truly suspicious network traffic alerts
from false alerts.

In this work, we propose an ensemble model to distinguish
truly suspicious alerts from false alerts. Our model consists of
two sub-models with different feature extraction strategies to
ensure the diversity and generalization. We use decision tree
based boosters and deep neural networks to build ensemble
models for classification. Finally, we evaluate our approach on
suspicious network alerts dataset provided by 2019 IEEE BigData
Cup: Suspicious Network Event Recognition. Under the metric
of AUC scores, our model achieves 0.9068 on the whole testing
set.

Index Terms—Ensemble Model, Imbalanced Dataset, Suspi-
cious Network Event Recognition, 2019 IEEE BigData Cup

I. INTRODUCTION

Web services have become indispensable due to their con-
venience and wide usage. Companies build web services to
provide online videos, data storage, social network service
(SNS) and so on. To offer such all-sided services, serving
systems become so complicated that they are always full of
implicit bugs and secure weaknesses. Since these services store
lots of user sensitive information, they are inherently vulner-
able to various attacks. Based on the potential consequences,
anomalous behaviours of the adversaries can be classified
into information distortion, destruction and discovery [1].
According to the Data Breach Statistics [2], the companies
from all over the world lost around 6 million records due to
the humans faults. Researchers predict that cybercrime will
cost the world in excess of $6 trillion annually by 2021, up
from $3 trillion in 2015 [3]. Thus, it is urgent to build an
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effective suspicious network event detection model to prevent
potential economical losses.

Previous works have considered to detect anomalies based
on raw logs. DeepLog proposes a deep neural network using
Long Short-Term Memory (LSTM) to detect anomaly by
expressing the raw logs in terms of a natural human language
[4]. Xu et al. [5] first transform console logs to numerical
features. They then use pattern based filters and Principle
Component Analysis (PCA) to detect anomalies. Despite of
machine learning ways, Lou et al. [6] propose a workflow
mining algorithm. Even though they are successful detection
models, none of them aimed to detect anomalies with the com-
bination of so-called network traffic alerts used by Security
Operations Center (SOC) and log databases. This combination
improves the efficiency of detection. With the help of network
traffic alerts, detection models only need to analyze the logs
related to alert, which can be retrieved from efficient log
database [7], [8]. They highly reduce the number of logs which
needs to be inspected. Besides, log databases provide statistical
attributes to improve classifiers’ performance.

For being intruded by adversaries costs disastrous loss,
traffic alert systems sacrifice precision to improve their recall,
which tend to generate lots of false alerts. Though they
ensures systems’ security, they can be annoyed and hard to
be dealt with. By introducing network traffic alerts to raw
logs preprocessing, anomaly detection problems transform to
distinguish truly suspicious network event alerts from false
alerts. To improve the performance of classification models,
the log database is queried to retrieve crucial attributes of logs
which are related to alerts.

Figure 1 shows the architecture of the whole process. Sys-
tem logs record system provides logs which describe current
running processes’ states in the system. Despite of others,
logs corresponding to network traffic are distilled from record
system. Network traffic log database records these logs for
further usage. Suspicious network event analyzer monitors
traffic logs, and when such event is detected, it reports the alert
with scores given by its analyzing system. When receiving
the alert from analyzer, alert classification system queries log
database to gather more attributes of the alert. Based on its
present dataset, the log database summarizes the attributes of
the alert, which is shown in Section IV, and returns them to
the classifier. Given all this information, the alert classification
system predicts whether the alert is true or not.

In this paper, we focus on building an alert classification
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Fig. 1. Architecture of suspicious network events recognition

systems. We propose an model to distinguish truly suspicious
network events from false alerts. The model uses network
traffic alerts and queries results related to corresponding alerts
from the log database with summary-based approximate query
engine described in [7], which provides tabular data instead
of raw logs. Our model consists of two sub-models, called
XCSS and XLRN. They extract features from the dataset fol-
lowing different intuition for improving the robustness of our
model. Each sub model builds an ensemble model, including
random forest based boosters and deep neural networks, to
predict whether an alert is a truly suspicious network event.
The results from both models are combined together before
submitting final prediction of the authenticity of network traffic
alerts.

The challenge in building the classification model is that our
dataset is small and imbalanced. Suspicious network event an-
alyzer pursues generating alerts to guarantee the security level.
Therefore, negative class becomes majority in our dataset.
Nevertheless, our model achieves a high performance with a
small dataset. Instead of using all records from log database,
our model utilizes a small subset of these logs which are
sampled from the original dataset by using [7]. By sacrificing
little performance on prediction, our model is effective since
we only use 0.2% records in average to train our model and
classify alerts.

The structure of this paper is described as follow: Back-
grounds of this work are introduced in section II. Section III
describes the attributes in our dataset. Section IV explains the
methodology we used to build our model and results from the
experiments are presented in Section V. We summarize our
paper in section VI.

II. BACKGROUND AND RELATED WORK

A. Anomalous Behaviors on Web Services

For the huge diversity and complexity of web services,
the previous works have proposed different taxonomies about
classifying the behaviour of adversaries [9], [10], [11] and
[12]. Due to the various anomalous behaviors on web service,

the remainder of this section will introduce the related works
of some sub-problems in practice.

One of the crucial attacks aim at electric smart grid. [13]
proposes a strategy to expose the weakness in smart girds’
framework. It can be used as a guideline before launching
cyber attacks on smart grids. Instead of attacking the weakness
of the web service systems directly, [14] proposes a Generative
Adversarial Networks (GAN), which camouflages its network
traffic to deceive defenders. Network traffic generated by this
method acts like ’normal’ traffic. Besides, for prevalent web
services, some works focus on inferring users’ private infor-
mation by collecting overhead packets [15], [16]. Detection
strategies which depend on system’s logs cannot prevent these
kind of attacks.

B. Sampling Strategies on Imbalance Dataset

Suspicious network traffic alerts are generated by high recall
systems to guarantee that no suspicious events can evade
from the detection. Therefore, most of reported alerts are
false labeled and result in an imbalanced dataset. Dataset with
imbalanced class labels cause bias of the classifiers. Classi-
fiers are apt to ignore minorities to gain optimum evaluation
scores, especially when improper feature extraction strategies
or evaluation methods are chosen to train the classifiers. Many
previous works have proposed different specific techniques to
diminish the bias, such as [17], [18]. Despite of designing
specific models, training set could be transformed to new
balanced datasets by applying well-designed sampling strate-
gies. [19] and [20] compare average performance of sampling
strategies on several public imbalanced datasets with chosen
models. Generally, there are three kinds of sampling strategies
to balance the dataset on minorities classes:

1) Oversampling: Artificially create new minorities points
by analyzing the feature space or rise the probabilities
of minorities to be sampled [21], [22], [23].

2) Undersampling: Assign majorities lower probabilities to
be sampled or us certain criteria to eliminate majorities
[24], [25], [26], [27].

3) Combined-sampling: Combine both methods in over-
sampling and undersampling to improve the robust of
transformed dataset [28], [29].

C. Decision Tree Based Model

Currently, there are many excellent machine learning mod-
els based on decision tree. As an emerging and highly flexible
machine learning algorithm, random forest [30], [31] have
broad application prospects. It integrates multiple decision
trees into one model through the idea of ensemble learn-
ing. The final prediction of the random forest is obtained
by averaging the prediction of each tree. Different from
the random forest method, in the boosting method, decision
trees are no longer independent but associated. The Gradient
Boosting Decision Tree (GBDT) [32] model uses the negative
gradient direction of the loss function instead of the residual
direction. XGboost [33] adds a regularization term to the
loss function, uses the second-order Taylor expansion of the
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TABLE I
ALERT AAN ’S ATTRIBUTES IN LADT

Attribute Name Example Values
alert ids AAN AAN AAN
alerttype IDPS Alert IDPS Alert IDPS Alert

devicetype NIPS NIDS NIDS
reportingdevice sZp WmQ WmQ
devicevendor BU TR TR

srcip 10.NF.RH.9 10.NF.RH.9 10.NF.RH.9
dstip UJ.QJ.173.138 UJ.QJ.173.138 UJ.QJ.173.138

srcipcategory PRIV-10 PRIV-10 PRIV-10
dstipcategory INTERNET INTERNET INTERNET

srcport 43073 43073 51035
dstport 80 80 80

srcportcategory 3 3 4
dstportcategory 2 2 2

direction 3 3 3
alerttime 0 10 1280
severity 5 5 5
count 1 1 1

domain 0 0 0
protocol 6 TCP TCP
username 0 1 1
signature 1 1 1

objective function, and speeds up the search for the optimal
segmentation point through the greedy algorithm. LightGBM
[34] utilizes a histogram-based algorithm and Gradient-based
One-Side Sampling (GOSS) training method to further im-
prove model efficiency. In 2018, Prokhorenkova1 et al. [35]
proposed Catboost, which is very friendly to category features
and has performed well on some public datasets.

III. DATASET

Our dataset is provided by 2019 IEEE BigData Cup: Sus-
picious Network Event Recognition [36]. Two tables, initial
training data table (ITDT) and localized alert data table
(LADT), are chosen from the dataset to train our alerts
classification models. ITDT and LADT are generated from an
summary-based approximate query engine described in [7]. It
provides crucial information from log event datasets for classi-
fication in a standard relational style. To distinguish logs from
different alerts, alert id is used as a unique identifier, which
matches to several logs depending on the events. In ITDT, each
alert has only one record, aggregated from a set of selected
logs. Besides, it contains analytical attributes generated from
alert systems. LADT provides variable quantities of records for
each alert, with more details which are eliminated in ITDT.
It is worth to mention that the records in LADT is composed
from several logs of the original dataset, which is introduced
in [7].

Table I shows an example of data from LADT. Alert AAN
has three records in LADT triggered in different times. For
these three records, the source IP address and destination IP
address are same respectively, but each record aims at different
devices.

IV. METHODOLOGY

In this section, we propose an alert classification system
in fig. 1. Our system distinguishes truly suspicious alerts

from false alerts based on the dataset described in section
III. To detect truly suspicious events from false alerts, our
classification model consists two sub-models, called XCSS
and XLRN respectively. Figure 2 shows the overview of our
model. XCSS and XLRN have their own feature extraction
methods. They are totally independent and focused on different
aspects, though their selected features are partially overlap.
XCSS inclines to use directly features and handle category
features by known embedding methods [37], while XLRN is
apt to extract category features by carefully inspecting the
interior connections between different categories. We believe
that the usage of different feature extraction strategies could
improve our final results on test dataset, for it improves the
generalization of our system. Besides, XCSS and XLRN use
different methods to build ensemble model, based on the
empirical performance on their own features.

To ensure the clarity, following sections describe XCSS and
XLRN separately. Section IV-A shows the details of XCSS
while section IV-B explains the principles of XLRN. We
subsequently state the importance of combining these two
models in section IV-C.

A. XCSS

XCSS is designed to utilize embedding method thoroughly
by concatenating different attributes together and embedding
them to several dimensions. XCSS ignores human’s knowledge
on the suspicious network events recognition. It focuses on
the techniques to embed categories from distinct attributes
and categories in variable-length time sequence data instead
of aggregating them by statistic methods. The intuition behind
XCSS is that human may mislead their models because of their
limitation on specific problem. However, using embedding
methods without considering the practical meaning of each
category can prevent the influence of human’s fault. Under
the intuition, we implement XCSS in the following ways.

1) Data Cleaning: XCSS cleans ITDT and LADT by
simple rules. All categories in attribute protocol are converted
to lowercase. Besides, start minutes is chopped into 4 different
time periods, each has a continuous duration of 15 minutes.
For empty entries, XCSS puts ’empty’ or zero to them,
depending on the characters of corresponding attributes.

2) Feature Extraction: XCSS performs feature extraction
mainly based on original attributes in ITDT and LADT.
Table II shows the processing methods for each feature. To
ensure the clarity of Table II, features which have similar
names are combined into a line by using asterisks. When
applying Latent Dirichlet Allocation (LDA) [37] to a selected
feature, each category in the feature is transformed to 5-
dimensional vectors. For counting method, XCSS counts each
category’s quantity in the whole dataset, and assigns the value
to correspond categories. For ratio method in Table II, these
features’ counting results are divided by the corresponding
values in correlatedcount and added as new features.

Considering the implicit interaction of different attributes in
dataset, XCSS does counting across different attributes. For
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Fig. 2. Flow chart of the truly suspicious alert detection model.

TABLE II
FEATURES PROCESSING METHOD OF XCSS

Feature Processing Method Feature Processing Method
overallseverity directly input alerttype count & ratio
timestamp dist directly input & ratio device type count & ratio
correlatedcount directly input * code count & ratio

isiptrusted directly input srcip* count & ratio
grandparent category directly input dstip* count & ratio

* cd directly input & ratio direction count & ratio
*score directly input severity count & ratio

p6, p9, ... directly input domain count & ratio
ip counting protocol count & ratio

weekday counting & LDA username count & ratio
client code counting & LDA parent category LDA

categoryname LDA start hour LDA
ipcategory name LDA ipcategory scope LDA

* dominate LDA

every pairs of client code, ip, categoryname, weekday, dstip-
category dominate, srcipcategory dominate, XCSS counts the
number of different second chosen attribute categories for
each category in the first chosen attribute. After brute-forcing
selected attributes, we obtain 30 new features.

Besides of counting, XCSS applies LDA to different sets of
feature in three ways:

1) XCSS concatenates pairs of attributes from six as-
signed attributes (client code, ip, categoryname, week-
day, dstipcategory dominate, srcipcategory dominate)
in brute-force and treats every line as a two-words
sentence. It applies LDA to these sentences and get a
5-dimensional vector for every line. Algorithm 1 shows
the embedding method. By this way, XCSS gets another
150 features.

2) Four attributes’ categories (alerttype, devicetype, report-
ingdevice code, devicevendor code) are aggregated by
alert ids respectively. For example, an alert id with eight
logs will have four eight-words sentences. Each sentence
corresponds to a chosen attribute. By applying LDA,

each alert id obtains a 5-dimensional vector for each
attribute. In total, XCSS has another 20 features.

3) Instead of applying LDA to each attribute respectively,
XCSS selects first nine attributes except alert ids and
protocol in LADT and builds sentences by the time
sequence according to alerttime. They are transformed
by LDA and 15 more features are obtained.

Eventually, XCSS construct a 374-dimensional vector for
every alert id. All features are scaled to standard and normal-
ized.

3) Ensemble Model: XCSS is consisted of three different
types of boosting models: LightGBM [34] [38], XGBoost [33]
and CatBoost [35]. Although the training set is imbalanced,
XGBoost can handle it quite well with high L2 regularization
(L2 equals to 100). Besides, Catboost can do well with its
default setting. However, when using LightGBM, we found
that imbalanced dataset had a non-trivial impact on the met-
rics scores. To improve its performance against imbalance
problem, training set is transformed by SMOTEENN [28], a
sampling method to balance training set, before being fed to
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Algorithm 1 First Way to Apply LDA
Input: First Attribute of All Alerts a1
Input: Second Attribute of All Alerts a2
Output: Embedding Result

1: app sentence matrix← list
2: for i = 0 to num of alerts do
3: attribute sentence← concatenate(a1[i], a2[i])
4: app sentence metric append attribute sentence
5: end for
6: token matrix← CountTokenizer(sentence metric)
7: embedded matrix← LDA(token matrix)
8: return embedded matrix

LightGBM.
Empirically, some features are indexed by their categories

in table II instead of applying to LDA. By treating them
as numerical features, the AUC of XCSS improves slightly.
These counter-intuitive features are fed into SMOTEENN and
LightGBM. Besides, we add another LGBM model which
uses LDA to handle categories features, described in Table II.
Equation 1 shows the weights of different models in XCSS:

XCSS = lgbm1∗0.3+lgbm2∗0.2+xgb∗0.2+cat∗0.3 (1)

where lgbm1 uses index and lgbm2 uses LDA to embed cate-
gory attributes. XCSS predicts the probability of an suspicious
network event alert being a truly alert.

Even though XCSS extracts adequate features from ITDT
and LADT, human’s inspection of attributes characteristic is
absent from the whole processes. Without inspecting, some
useful features, which highly influence the prediction results,
may be omitted from the models. To overcome XCSS’s flaw,
another model called XLRN is built to complement XCSS.

B. XLRN

To overcome the flaws in XCSS, we build XLRN, which
handles categorical features by manually inspecting the dis-
tribution of different values corresponding to their labels.
Different from relying on existing embedding methods, XLRN
is based on human’s knowledge to extract features from the
dataset. The intuition behind XLRN is that features which
are constructed by manual interference may have surprised
effect on improving the performance. Data cleaning process is
omitted in XLRN, for all selected attributes in our dataset are
’clean’ enough to be used. XLRN provides another aspect of
probing alerts characteristic, which improves the generaliza-
tion of the final ensemble model. The remainder of this section
will introduce XLRN in detail.

1) Feature Extraction: XLRN uses two way to transform
ITDT’s attributes into features. Table III lists the attributes
which are fed to XLRN directly. To ensure the clarity, fea-
tures which have similar names are combined into a line by
asterisks. XLRN obtains 35 features in this way.

By carefully analyzing the distribution of the data, XLRN
selects some attributes and infers the correlation between their

TABLE III
DIRECTLY INPUT FEATURES OF XLRN

Feature Name Column Number in ITDT
overallseverity 9
timestamp dist 10
correlatedcount 15

* cd 27-42
isiptrusted 43

*score 44-47
thrcnt * 52-54

p6, ..., p8d 55-62

TABLE IV
MANUALLY ASSIGNED FEATURES OF XLRN

Feature Name Column Number in ITDT Possible value
categoryname 3 1, -1, 0

ipcategory name 5 1, 0
ipcategory scope 6 1, 0

n sum 16-25 1, 0
score 26 1, 0

dstipcategory dominate 48 1, -1, 0
dstportcategory dominate 50 1, 0

value and the authenticity of their alarms. By manually de-
signing some policies and specifying assignment rules, XLRN
obtains another bunch of features. Table IV lists the selected
features and all the possible assigned values for each of them.
The intuition is that if a category is more likely to appear
with positive samples, it is assigned to 1. -1 is for categories
which always appears with negative samples, and if there’s
no obvious relationship, it is set to 0. As an example, Figure
3 shows the frequency of true alert for each category in the
attribute categoryname. Note that the average frequency of all
samples is 0.0577 (2276/39427). It is obvious that the true alert
frequencies of Malicious Activity and Control and Maintain
are far above the average frequency, so they are assigned
to 1. Conversely, Attack, Suspicious Reputation and Attack
Preparation are assigned to -1 due to their significantly lower
frequency. The others are assigned to 0. It is worth to mention
that the assignment of feature n sum is based on the sum of
numerical values in n1, n2, ..., n10 in ITDT. Empty values
are all filled with zero. XLRN obtains 42 features from ITDT
from these two methods.

XLRN follows the intuition described above to process
dataset in LADT but implements in another way. The relation
between LADT and ITDT is many-to-one. It is logical not to
simply replicate data points’ features in ITDT several times
and concatenate ITDT and LADT to a artificial one-to-one
relation. For an truly suspicious alert id, we cannot infer that
all its logs generated at different times in LADT are truly
suspicious. Therefore, all the relevant data in LADT of a
individual alert should be treated as a whole and aggregated.
For numerical data, some statistical methods are used to
explore their characteristics. As shown in Table V, the attribute
alerttime’s maximum value is divided by corresponding cor-
relatedcount in the ITDT. For the attribute count, we calculate
their sum and average. Other three features’ average are used
in training process. XLRN obtains six new features in this
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Fig. 3. Frequency of true alert for each category in Categoryname.

TABLE V
STATISTICAL FEATURES OF XLRN

Feature Name Statistical Method
alerttime division
severity average
count sum, average

domain average
username average

step.

For variable length categories, we follow the idea described
in Table IV by using an additional aggregation step. For
each attribute, we carefully analyze the distribution of its
corresponding categories and infer the categories which are
highly relevant to the positive samples or negative samples.
The selected attribute then is transformed to a 4-dimensional
vector. It consists of the number of highly relevant categories
and irrelevant categories and their frequency. For example,
in the attribute dstipcategory, PRIV-192 and TEST-NET1 are
highly relevant to positive samples. PRIV CGN and PRIV-
172 are highly relevant to negative samples. We count their
quantities and frequency for each alert id. In this step, other
7 attributes (alerttype, devicetype, devicevendor code, srcip-
category, srcportcategory, dstportcategory, direction) are also
selected as features in XLRN. Totally, XLRN contains 80
features.

2) Ensemble Model: XLRN consists of four models: ran-
dom forest (RF) [30], XGBoost (XGB) [33], LightGBM
(LGBM) [34] and a 4-layer neural networks (NN). XLRN
doesn’t do extra processing to handle imbalance problems.
Every models except NN can achieve acceptable classification
results. Though NN in XLRN has a poor performance, it
improves the robustness of XLRN and it is preserved. Equation
2 shows the weights of different models in XLRN:

XLRN = RF ∗0.3+LGBM ∗0.3+XGB ∗0.3+NN ∗0.1
(2)

where all the weights are chosen empirically. XLRN even-
tually offers the probability of an suspicious network event
alert being a truly alert.

XLRN provides feature extraction by specific analyzing
the distribution of different categories, transforming them to
numerical features before aggregation in selected attributes.
Using specific knowledge makes the results become expli-
cable, comparing to automatic feature extraction methods.
Despite of providing manual inspection in dataset, the feature
space of XLRN is limited by our understanding of suspicious
network events, which means that truly alerts and false alerts
may not be successfully distinguished or they are divided in
an improper way.

C. Model Ensembling and Truly Alert Detection

XCSS focuses on applying existing methods to embed cat-
egories and concatenate attributes to find the interior relation-
ship amongst them, while XLRN is apt to manual inspect the
distribution of different categories in each selected attributes
and make the results explicable. To benefit from the advantages
of both XCSS and XLRN while evading their flaws, predic-
tion results from these two sub-models are combined before
giving the final decision. The difference of feature extraction
strategies ensures the generalization and robustness of the final
model. We combine the prediction results with equal weights,
as shown in Eq.3:

TRUE PROBA = XCSS ∗ x+XLRN ∗ y (3)

where the parameters x and y are both empirically set to 0.5 in
this study. After combination, all alerts with TRUE PROBA
higher than 0.5 will be classified as truly suspicious alerts.

V. EVALUATION RESULTS

A. Set up

We use two NVIDIA 2080 GPUs to train our model. There
are 39,427 different alerts in our training set, with 2,276 truly
suspicious alerts. For testing set, we have 20,000 different
alerts. 2,000 alerts in testing set are randomly selected to
evaluate the performance of XCSS and XLRN.

B. Training

We use Area under the ROC Curve (AUC) scores to evaluate
the performance of our model. AUC provides an aggregate
measure of performance across all possible classification
threshold [39]. To optimize the performance of the model,
we tune the hyper-parameters of each classifier respectively
by using 5-folds cross validation except CatBoost of XCSS
and NN of XLRN. CatBoost originally has well-tuned hyper-
parameters which produce acceptable AUC and NN’s hyper-
parameters are manually set based on experience. Besides,
the performance of CatBoost is highly influenced by initial
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TABLE VI
5-FOLDS CROSS VALIDATION AUC SCORES

Sub-Model Method AUC Train AUC Val
lgbm 1 0.996 0.9477

XCSS lgbm 2 0.999 0.9446
xgb 0.999 0.9342
rf 0.999 0.9253

XLRN lgbm 0.996 0.9156
xgb 0.999 0.9190

TABLE VII
AUC SCORES IN TESTING SET

Model Name AUC Scores (Partial) AUC Scores (Whole)
XCSS 0.9325 -
XLRN 0.9303 -

XCSS+XLRN 0.9420 0.9068

random state. We train several classifiers with random initial
seeds and choose the one with best performance.

Table VI shows the 5-folds cross validation results on
training set. It is obvious that the performance of single models
in XCSS is generally better than models in XLRN, but we
found that the models in XLRN can also achieve acceptable
performance after ensemble.

C. Testing

After fine-tuning the hyper-parameters of XCSS and XLRN,
we evaluate them respectively. Due to the regulation of
BigData Cup Challenge, we cannot access the AUC scores
from the whole testing set. Our prediction results can only
evaluate on the 2,000 alerts testing set before the end of the
competition. Table VII shows evalution of XCSS and XLRN
on testing set.

XCSS achieves 0.9325 AUC score while XLRN achieves
0.9303 AUC score. By combining the prediction results from
XCSS and XLRN, our model achieves 0.9420 AUC score,
which approves the combination of two parallel models which
are built in distinct methods. It is worth to mention that XCSS
tried to include a simple bagging-NN [40] trained by under-
sampling false alerts to keep training set balanced. Though
XCSS achieves higher AUC score (0.9339), the combination
model’s AUC score drops to 0.9396. We believe that the
bagging-NN will cause XCSS overfit.

Finally, we test our ensemble model as described in Section
IV-C on the whole testing containing 20,000 alerts, and it
achieves the AUC score of 0.9068 eventually.

VI. CONCLUSION

In this work, we propose an ensemble model to classify
truly suspicious network event alerts from false alerts with
certain logs corresponding to the alerts. Our model is divided
into two independent sub models, called XCSS and XLRN.
Different feature extraction strategies are used to them re-
spectively. XCSS focuses on applying LDA to find the inner
connection among different attributes while XLRN inclines
to analyze the relationship between different categories and

alerts authenticity in several selected attributes. We use random
forest based boosters and deep neural networks to build
ensemble models for classification. We evaluate our model in
the suspicious alerts dataset provided by 2019 IEEE BigData
Cup. The dataset concludes about 40,000 training alerts and
20,000 testing alerts with their summary-based approximate
event logs. XCSS achieves 0.9325 AUC scores while XLRN
achieves 0.9303 AUC scores on 2,000 random selected alerts
from testing set. By combining the results from two sub-
models, our model achieves 0.9068 on the whole testing set.
Future works can focus on reducing the classifiers in the
model while keeping the performance to further improve the
efficiency of detecting suspicious network traffic events.
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