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A B S T R A C T

The prosperity of mobile sensing technology makes smartphone-based authentication more prevalent in mobile
environment. The present single-modality security authentication based on human biometrics is vulnerable
to counterfeit, and the procedure of basic two-factor authentication (2FA) is cumbersome. In this work, we
propose a 2FA method without additional devices and procedures, namely WiCapose. The essential technique
is to use the unique correlation of the two side-channel to complete multi-modal feature extraction and
fusion authentication. WiCapose can simultaneously extract the radio frequency (RF) gain feature that directly
characterizes the finger movement and the inter-frame spatio-temporal difference from the rear camera that
indirectly portrays the tapping behaviors, to blend the micro-scale behavior pattern feature of the user’s finger
and implicit biological features. Then we design and train a deep neural network to fuse both factors for
mitigating the limitation of the RF factor in environmental generalization and the uniqueness of the image
factor on authentication performance. Experiments involving ten participants demonstrate that our method can
achieve a 98% average accuracy on authentication and effectively resist shoulder-surfing attacks and mimic
attacks.
. Introduction

With the popularization of mobile environment, its security has
ttracted widespread attention. Many biometric authentication schemes
ave emerged, relying on the human body’s exterior unique physiologi-
al or behavioral features, such as fingerprint, iris, face, voiceprint, and
abitual behaviors.

However, these authentications based on exterior biometric infor-
ation are highly vulnerable to imitation attacks, such as attacks

n face recognition by printed eyeglass frames [1], invasion of fa-
ial privacy by the front camera [2,3], and mimic voiceprint by the
re-recorded voice [4], counterfeit fingerprints by silica gel [5]. Never-
heless, the present Two-Factor Authentication (2FA) can prevent these
ttacks but raises authentication complexity, e.g. Yubikey [6], requiring
sers to carry additional hardware devices, or increase authentication
rocedures which reduces user experience and system availability. So
s it feasible to take a transparent 2FA?

✩ The work supported in part by the National Science Foundation of China under Grant 61772453, Grant 61972453; and in part by the Natural Science
oundation of Hebei Province under Grant F2020203074.
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lin@ysu.edu.cn (L. Wang).

In the mobile scenarios, the widely deployed Wi-Fi devices provide
the Channel State Information (CSI), a non-intrusive and location-
dependent side-channel information, which are harnessed to perceive
human behavior [7,8], even breathing [9], tracking [10], sleep de-
tection [11], fall detection [12], gesture recognition [13], ReID [14],
and respiration detection [15]. Furthermore, the evolved two-factor
authentication [16,17], combined with these advantages of wireless
perception and the unique biological features of fingers, is transparent
to users who only need a single rapid Personal Identification Number
(PIN) input process to simultaneously obtain dual side-channel data to
complete the entire 2FA mobile enhanced security authentication.

This paper proposes a mobile security authentication system based
on an intelligent fusion of interior multi-modal side-channel sensing
information, WiCapose, as shown in Fig. 1. It is well-known that every
ordinary person has his living habits and unique behavior features [18,
19]. When the mobile system authenticates the user, biometric features
of the hands and fingers [20–22] can be collected by the CSI through
vailable online 29 March 2022
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Fig. 1. WiCapose, a novel dual side-channel mobile perception authentication system.

ubiquitous WiFi transceiver devices. Moreover, the posture of the hand
and the habitual force of tapping the screen during input cause the
phone to tilt a certain angle, which is expressed by pose information,
and people with different habits lead to different tilt angles when
hitting keys. From there, the smartphone’s pose could be extracted
from a video shot by the rear camera face to compose a unique
feature of personal behaviors, which has a strong correlation with
CSI. The rear camera faces an unobstructed Authentication Reflection
Area (ARA) covering an area of arbitrary plane in mobile computing
environments, such as floor and desktop. WiCapose adopts the interior,
non-imitation, and non-copying of the correlation between the two
side-channel biometric modes of micro-scale finger behaviors without
additional devices and procedures. It can effectively and conveniently
guarantee the mobile system’s security and robustness by preventing
both mimic attacks and shoulder-surfing attacks.

To the best of our knowledge, WiCapose is the first to leverage
wireless side-channel features of dynamic behavior, combined with
camera pose change for smart-home user authentication. Combined
with the above factors, WiCapose has the following three challenges.

(1) How to extract the unique features of user behavior through
high-resolution CSI segmentation. Using smartphones to collect CSI
information is a pervasive instrumental technology, but its defect is
that the power of the Network Interface Controller (NIC) chip in a
smartphone is much weak. So there is much noise in the collected CSI
data.

(2) How to extract posture transformation features of the handheld
devices synchronously. When users login, and tap on the smartphone,
the procedure is completed according to individual unique habits, such
as the angle of the handhold, the strength of the tapping, and length
of duration, the continuous space scope of finger operations. All can be
utilized to authenticate the user’s uniqueness.

(3) How to realize multi-modal heterogeneous information fusion
on the energy-constrained platform. The deep model’s training requires
extreme computing capability and power to achieve multi-modal het-
erogeneous information fusion. Moreover, the location-dependent of
CSI could be mitigated by weighted deep fusion.

The main contributions of the paper can be summarized as follows.

• We present a transparent 2FA system, WiCapose, which segments
the CSI to obtain the high-resolution information, performs multi-
modal fusion combined with the camera pose transformation
features of the smartphone, to extract the side-channel unique fea-
tures of the user for authentication, prevent a variety of attacks,
and enhance the security capabilities of mobile environment and
other systems.

• We devise a deep neural network for finger behaviors’ features
extraction given the diversity of finger movements in complex
scenes. It can effectively mitigate location-dependent RF gain
features and relieve the system’s constraints on user posture and
background noise to improve authentication accuracy.
2

• We design and implement WiCapose on Nexus5, which could
noninvasively perceive user behaviors to expand the application
scenarios of CSI. Abundant experimental results show that the
accuracy achieves 98.3% through the unique identification of
side-channel features. The result verifies the safety and reliability
of system authentication.

The remainder of this paper is organized as follows. In Section 2, we
introduce the preliminaries of this work and the attacks that this system
can defend. We present the architecture design in Section 3, which is
followed by CSI Representation, Camera Pose Calibration, Multi-Modal
Fusion, Evaluation, and Discussion in Sections 4, 5, 6, 7, respectively.
Finally, we conclude this paper in Section 8.

2. Preliminaries

2.1. Channel state information

CSI represents the influence of multi-path, such as Line Of Sight
(LOS), reflection, diffraction, and impact of actions on the channel
during signal transmission [23]. When the environment is fixed, the
static part is a constant independent of time-variant. During signal
transmission, there are phase shifts caused by the devices and noise
interference in the environment, so the corresponding transmission
signal is derived as the (1):

�̂�(𝑡, 𝑓 ) = 𝑒−𝑗𝑛(𝑡)𝑓𝐻(𝑡, 𝑓 ) + 𝜇(𝑡, 𝑓 )

= 𝑒−𝑗𝑛(𝑡)𝑓 (𝐻𝑠(𝑓 ) +𝐻𝑑 (𝑡, 𝑓 )) + 𝜇(𝑡, 𝑓 )

= 𝑒−𝑗𝑛(𝑡)𝑓𝐻𝑠(𝑓 ) + 𝑒−𝑗𝑛(𝑡)𝑓𝐻𝑑 (𝑡, 𝑓 ) + 𝜇(𝑡, 𝑓 ).

(1)

In (1), 𝐻𝑠(𝑓 ) is a static variable in the multi-path transmission,
𝐻𝑑 (𝑡, 𝑓 ) represents the dynamic part, 𝑒−𝑗𝑛(𝑡)𝑓 is the frequency offset due
to hardware, and 𝜇(𝑡, 𝑓 ) represents additive white Gaussian noise. The
received CSI signal is affected by many factors, including frequency
deviation caused by hardware defects, environmental noise, and signal
superimposition caused by the multi-path effect. Especially as limited
hardware performance, the signal deviation is large, and the CSI am-
plitude fluctuates wildly. So, the amplitude and phase information of
collected CSI contains a lot of noise, and denoising cannot perform well.
In the following work, these factors which impact authentication are
removed.

2.2. Feature component

The smartphone’s motion is approximately regarded as a rigid body
movement, denoted by the rotation matrix 𝑉𝑅 and the translation
matrix 𝑉𝑇 , extracted from the video taken by the smartphone’s rear
camera. In high-security application scenarios, both rotation and trans-
lation caused by tapping the screen during the authentication process,
represents the user’s behavior features, regarded as a tuple: ⟨𝑉𝑅, 𝑉𝑇 ⟩.
Combining with the previously extracted CSI features of finger behavior
compose unique user behavior features: ⟨𝐶𝑆𝐼, (𝑉𝑅, 𝑉𝑇 )⟩. The user’s in-
put process is a sequential continuous process {⟨𝑡1, 𝑡2⟩⟨𝑡3, 𝑡4⟩⋯ ⟨𝑡𝑖, 𝑡j⟩⋯},
where 𝑡i/j denotes the time index of each independent action, and the
entire authentication process can be represented as:

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖𝑛𝑝𝑢𝑡 ={⟨𝐶𝑆𝐼, (𝑉𝑅, 𝑉𝑇 )⟩⟨𝑡1 ,𝑡2⟩,

⟨𝐶𝑆𝐼, (𝑉𝑅, 𝑉𝑇 )⟩⟨𝑡3 ,𝑡4⟩,… ,

⟨𝐶𝑆𝐼, (𝑉𝑅, 𝑉𝑇 )⟩⟨𝑡𝑖 ,𝑡𝑗 ⟩ …},

(2)

where ⟨𝐶𝑆𝐼, (𝑉𝑅, 𝑉𝑇 )⟩⟨𝑡𝑖 ,𝑡𝑗 ⟩ represents the feature matrix of an behav-
ior which starting from 𝑡𝑖 to 𝑡𝑗 . The deep neural network fuses all
timing-related unique features generated during the entire procedure
to express each different user, which is formula as:
𝐴𝑢𝑡ℎy/n = 𝑓𝐷𝑁𝑁 (𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖 ). (3)
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Fig. 2. The authentication framework of WiCapose consists of four components: data
collection, signal processing, feature extraction, and multi-modal fusion.

2.3. Threat model

The access to devices and resources of mobile environment requires
high secure and reliable authentication to protect user privacy and
security. However, current authentication methods are vulnerable to
mimicry attacks, shoulder-surfing attacks, so enhancing the user au-
thentication security of mobile system is a very challenging issue. First,
we assume that the attackers are not resourceful in terms of cloud
servers, and the attacks on cloud servers are beyond the scope of this
paper.

Shoulder-surfing Attack: There is always someone from behind
who can spy on or monitor your input process to record your input
pattern or concrete password content [24]. Its weakness lies in that
the input required in the system authentication process is only the
password string or a graphical unlock pattern which can be option-
ally recorded by anybody. Without additional security authentication
information, it brings challenges to the security of the system.

Mimicry Attack: In certain attack scenarios, an experienced adver-
sary can shoulder surfing the victim’s authentication mode, such as
key string, input behavior pattern and other information. When the
victim is not present, imitate the victim’s behavior to invade the mobile
payment system [25].

3. System design

As different people have different behavior unique patterns, WiCa-
pose is mainly base on the finger’s unique features. When the user
enters the smartphone’s critical authentication information, it can get
the user’s behavior pattern data to extract the user’s unique features and
then authenticate the user safely on the smartphone. We use the WiFi
signal to collect CSI information, and the rear camera collects posture
transformation data caused by finger tapping, integrates both into
multi-modal behavior features to perform two-factor authentication.
Fig. 2 shows the overview of the system design, which consists of four
components, data collection, signal processing, feature extraction, and
multi-modal fusion.

Data acquisition section: An Android application collects the CSI
data of behavior and camera pose information during the user’s input
stage on the mobile device. The user’s original data, including CSI data
packets and video sequences, are transmitted to the cloud through the
wireless network and processed efficiently.

The signal processing part mainly denoises and segments the CSI,
extracts corresponding amplitude fluctuation data of the behavior,
and then uses the start and end time points of the CSI segmentation
to extract the corresponding period’s snippets from the video frame
sequence. Precisely, in the denoising part, the Variational Mode Decom-
position (VMD) algorithm and smooth filter remove signal noise. For
more effectively highlighting each activity period’s fluctuation level,
3

the Short-Time Fourier Transform (STFT) transform is used for time–
frequency analysis. On this basis, accumulated signal energy on each
frequency, and the average value of energy is set as the threshold to
find the user’s activity’s start and end time points.

The third part, feature extraction, uses the Oriented FAST and
Rotated BRIEF (ORB) eight-point algorithm to calculate the camera
pose transformation matrix of every two frames in the segmented video.
Including rotation matrix 𝑉𝑅, translation matrix T, and CSI amplitude
matrix are fused to form the user’s final feature matrix. Finally, in the
fourth part, feed the combined feature matrix to a Fully Connected
(FC) neural network for training. The original matrix input to the
neural network contains three parts of feature matrices with different
dimensions. We do extraction and prediction through the FC network’s
nonlinear ability with high efficiency and low energy consumption and
then deploy the trained network model to authenticate users.

4. CSI representation

4.1. Denoising

First of all, we use smart mobile devices based on nexmon
firmware [26] to directly collect CSI, which provides vital portability,
mobility, effortless deployment, and feature enhancement. According to
the Fresnel Zone model [27], the aggregated signal is precisely affected
by these transmitters’ location and angle, so if the device’s distance
cannot be controlled, it is tough to portray the uniqueness of CSI-
based user behavior features. However the CSI information collected by
smartphone is not as stable as the data collected by traditional devices.
Influenced by the environment, deviations of software and hardware,
the composite signal fluctuations have been seriously interfered by
noise, and the core signal segmentation of behaviors is confused. For
extracting useful CSI segment indexes and features of user behaviors,
it is necessary to denoise the signal in advance.

At first, we use ordinary least squares to quadratic fitting the data
trend and subtract the current fitting curve from the CSI so that the
mean value of the detrended data is zero. After that, WiCapose focuses
on analyzing the data’s variation, highlighting the finger gesture’s
signal fluctuation, and it is easier to complete the subsequent segmenta-
tion and extraction of the behavior features. Next, WiCapose eliminates
outliers. Because the wireless NIC chip in the smartphone is unstable,
the finger gesture’s amplitude information is concealed in the outlier
noise. Hampel filter is used to filter out most outliers without affecting
the overall signal’s fluctuation scale and integrity.

Secondly, we apply VMD [28] to the signal. The signal trend fluc-
tuation is the most important, and CSI is a kind of random signal,
so the VMD adaptive decomposition is used to separate the effective
signal fluctuation trend and remove the noise of other frequencies. One
of the VMD algorithm’s benefits is that the number of Intrinsic Mode
Function (IMF) components can be set manually according to device
characteristics and experience. Moreover, as the number of decomposi-
tion components increases, high-frequency noise produces intermittent
phenomena, which does not affect the low-frequency region’s pattern
trend where the finger moves. We have collected some data in the
meeting room for verification. According to experience, we set the
number of IMFs to 3 to achieve a better decomposition effect, as shown
in Fig. 3. The top of the figure is the original signal of several sub-
carriers. The lower part of the figure is the result after VMD denoising,
which can show the signal segments.

4.2. Subcarrier selection

Subcarriers of different frequencies give further feedback to op-
erations on the wireless communication link, and some have more
noticeable effects on behavior features expression. When extracting fea-
tures in action’s CSI segments, they can effectively characterize actions
and serve as neural networks’ input to extract unique features. On the
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Fig. 3. Illustration of amplitude of CSI signal and motion section after denosing.
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contrary, if the subcarrier signal fluctuates weak or with no regularity,
it is not easy to segment it, which cannot fully reveal the behavior’s
feature information and form the feature expression corresponding to
the amplitude-phase of the behaviors’ signal. So it is a critical step to
efficiently and automatically make dynamic subcarrier selection that
appropriately responds to the behavior mode. The Auto Correlation
coefficient (ACF) technique [29] evaluates the effectiveness of different
subcarriers in CSI and efficiently extracts subcarrier signals that can
reflect stable behavior features. The definition of ACF for static signals
as (4) below:

𝜌(𝜏) =
𝐶𝑜𝑣[𝑥(𝑡), 𝑥(𝑡 − 𝜏)]

√

𝑉 𝑎𝑟[𝑥(𝑡)]
√

𝑉 𝑎𝑟[𝑥(𝑡 − 𝜏)]
, (4)

where 𝜌(⋅) is autocorrelation coefficient, 𝑥(𝑡) is time signal, 𝜏 denotes
he lags, 𝐶𝑜𝑣[⋅] is covariance, and 𝑉 𝑎𝑟[⋅] represents variance. 𝑉 𝑎𝑟[𝑥(𝑡)]
nd 𝑉 𝑎𝑟[𝑥(𝑡 − 𝜏)] are equal, so we define

̂ (𝜏, 𝑓 ) = 1
𝑛

𝑛−𝜏
∑

𝑡=1
[𝑥(𝑡 + 𝜏, 𝑓 ) − �̄�][𝑥(𝑡, 𝑓 ) − �̄�], (5)

�̄� denotes mean of 𝑥, then

𝜌�̂�(𝑡,𝑓 )(𝜏, 𝑓 ) =
�̂�(𝜏, 𝑓 )
�̂�(0, 𝑓 )

. (6)

Generally speaking, the ACF calculation of each subcarrier can be
obtained by (6), where �̂�(0, 𝑓 ) represents variance, �̂�(𝜏, 𝑓 ) is covari-
ance of 𝑥(𝑡, 𝑓 ) User behaviors influence CSI subcarriers to fluctuate.
Especially, verification behaviors are periodic and comply with estab-
lished habits and unique patterns. Therefore, we need only to perform
autocorrelation calculation on each subcarrier internal lag to get the
current fluctuating curve and select the most periodic subcarrier for
subsequent data segmentation and feature extraction. As shown in
Fig. 4(a), all subcarriers’ ACF is calculated, and the value of subcarrier
8 is maximum. Fig. 4(b) indicates that the ACF trend of subcarrier 8 is
the most obvious, and the periodic behavioral feature is also the most
explicit and reasonable.

4.3. Time–frequency analysis

The CSI subcarrier signal is affected in many ways. One of them is
additive white Gaussian noise. After the signal is denoised, the selected
subcarrier’s signal shows distinct fluctuation of the action sequence.
Next, we need to extract the section related to the behavior, that is,
segment the time series CSI signal.

After CSI filtering and denoising, we need to isolate the motion-
related CSI segments for feature extraction. However, some ineffective
signal fluctuations caused by hardware defects are apparent. So we
4

e

Fig. 4. Subcarriers selection by ACF.

perform the STFT and convert the CSI signal to the frequency domain
for spectrum analysis according to (7):

𝐺(𝑡, 𝑓 ) ≜ 𝑘||
|

�̂�(𝑡, 𝑓 )||
|

2
, 𝑘 = 2

𝐹𝑠
∑𝑁

𝑛=1 |𝑤(𝑛)|2

= 𝑘(|𝐻(𝑡, 𝑓 )|2 + 2Re{𝑛∗(𝑡, 𝑓 )𝑒−𝑗𝑛(𝑡)𝑓 |𝐻(𝑡, 𝑓 )|}

+ |𝜇(𝑡, 𝑓 )|2)
≜ 𝑘|𝐻(𝑡, 𝑓 )|2 + 𝑘𝜇(𝑡, 𝑓 ),

(7)

here 𝑤(𝑛) is hamming window, 𝐹𝑠 is the sampling rate, and 𝑘 repre-
ents the coefficient of signal energy. The movement of the Hamming
indow can reflect the signal fluctuations generated by user actions
t various moments. Next, we accumulate all Power Spectral Density
PSD) along the frequency dimension in the spectrum according to (8).

𝑎(𝑡) =
𝑓2
∑

𝑓=𝑓1

𝐺(𝑡, 𝑓 ) =
𝑓2
∑

𝑓=𝑓1

𝑘||
|

�̂�(𝑡, 𝑓 )||
|

2

=
𝑓2
∑

𝑓=𝑓1

[

𝑘|𝐻(𝑡, 𝑓 )|2 + 𝑘𝜇(𝑡, 𝑓 )
]

.

(8)

As we can see from Fig. 5, the difference in signal strength caused
y behaviors is evident in spectrum and has a robust periodic effect.
he red areas in this figure mean the tapping behaviors. But on the

eft in the spectrum analysis graph, there is a signal fluctuation due to
ardware defects. The cumulative value of the power spectral density
f different frequencies cannot clearly distinguish the boundary of the
egment and even miss some segment information. To facilitate the
etter distinction of the action signal boundary, we proceed to calculate
he variance of accumulation PSD, as shown in (9), where 𝐸(⋅) denotes
xpectation, 𝑃 is PSD accumulation. The result of 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒 is more
𝑎 𝐺
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Fig. 5. The spectrogram of time–frequency analysis. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Energy accumulation variance and boundary points of segmentation.

suitable to extract behavior segments.

𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐺 = 1
𝑁

𝑁
∑

𝑡=1
(𝑃𝑎(𝑡) − 𝐸(𝑃𝑎))

2. (9)

Then the smooth operation is performed on the spectral variance
result, which makes the entire curve easy to process the boundary judg-
ment, as shown in Fig. 6. At this time, the average threshold is used to
identify the CSI segments of the finger movement accordingly. To avoid
the influence of several interference segments caused by the hardware
defects, WiCapose designs a segment search algorithm, presented in
Algorithm 1, to perform perfect segment boundary adaptive extraction
and obtain the CSI sampling point indexes value of the beginning and
end of a segment.

Finally, we extract the CSI signal segment by the methods men-
tioned in the above subsections. The segmented CSI that expresses the
fingers’ tapping biometric features can be used to fuse with the follow-
ing video side-channel information for user identity authentication.

5. Camera pose construction

In a video sequence, we can use Visual Odometry to obtain the
camera pose. A finger tap on the smartphone causes the smartphone’s
rear camera to vibrate, which can be regarded as the fundamental
transformation of a rigid body in which geometric objects rotate and
translate in 3-D space. We estimate the camera’s motion state by cal-
culating the motion relationship between adjacent frames in the video
and obtaining the rotation and translation matrices to characterize the
essential behavioral features during user authentication. The rotation
matrix 𝑉𝑅 and the translation matrix 𝑉𝑇 represent the rigid body’s
primary motion, that is, the Euclidean Transform of the two coordinate
systems to denote the camera pose change. Such as the (10), where 𝑎′

is the transformed coordinate.

𝑎′ = 𝑉 𝑎 + 𝑉 , (10)
5

𝑅 𝑇
Algorithm 1: CSI Motion Segmentation.
Input: N consecutive CSI spectrum 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝛴𝐺 ,
Output: Array of CSI segment index 𝑠𝑒𝑔_𝑖𝑛𝑑𝑒𝑥 [𝑖]

1 initialization boundary threshold=mean
(

𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝛴𝐺
)

;
2

3 %Find these segment indexes.
4 while not end of 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝛴𝐺 do
5 if 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝛴𝐺 [𝑗] < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
6 i=findnext(𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝛴𝐺 [𝑘] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑);
7 end
8 end
9 Assign index to 𝑠𝑒𝑔_𝑖𝑛𝑑𝑒𝑥 [𝑖];
10

11 %Combine the very close adjacent segments
12 while not end of 𝑠𝑒𝑔_𝑖𝑛𝑑𝑒𝑥 [𝑖] do
13 if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑓 (𝑖, 𝑖 + 1) <

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒&&𝑆𝑢𝑚𝑙𝑒𝑛𝑔𝑡ℎ (𝑖, 𝑖 + 1) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑙𝑒𝑛𝑔𝑡ℎ
then

14 Combine(𝑖, 𝑖 + 1);
15 end
16 end
17

18 %remove the very short segments
19 while not start of 𝑠𝑒𝑔_𝑖𝑛𝑑𝑒𝑥 [𝑖] do
20 if 𝑆𝑒𝑔𝑙𝑒𝑛𝑔𝑡ℎ (𝑖) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠ℎ𝑜𝑟𝑡𝐿𝑒𝑛 then
21 Remove(𝑖);
22 end
23 end

We use homogeneous coordinates and transformation matrices to
maintain the linear relationship of multiple transformations include
rotation and translation, as (11):
[

𝑎′

1

]

=
[

𝑉𝑅 𝑉𝑇
0𝑇 1

] [

𝑎
1

]

≜ 𝑇 ′
[

𝑎
1

]

. (11)

Using the monocular camera in smartphone to collect video for
pose estimation, the action amplitude caused by finger behaviors to the
camera is small, which satisfies the hypothesis that there is no excessive
motion between two adjacent frames. Given the computing power and
memory space constraints, we adopt the highly efficient ORB [30,31]
algorithm to perform rotation 𝑉𝑅 and translation 𝑉𝑇 estimation. The
extracted binary feature descriptors must match each other and fulfill
data associations of frames. If matching the descriptors (𝑥𝑚𝑡 , 𝑥

𝑛
𝑡+1), we

can precisely estimate the camera pose, where 𝑥𝑘𝑡 denotes 𝑘 feature
points in frame 𝑡. We use hamming distance to measure the distance
of feature points so that the closest descriptors are regarded as the
matching feature points.

Through the above theoretical analysis, we can prepare to extract
the jitter side-channel information in the video. Nevertheless, before
that, we still need to do some preparatory work. First, the segments
with jitter information in the video sequence must be separated.

5.1. Alignment and segmentation

Before the pose estimation, we should extract video snippets
recorded while the finger taps the phone screen. Fortunately, we use
the same device clock to collect CSI data and video, so the time
signal is synchronized. The sampling rate of CSI is 90 pks/s, and the
video’s frame rate is 30 fps. A single video frame corresponds to three
CSI sampling points. The CSI segment indexes are obtained in the
above Section 4.3 maps to the video frame indexes and takes out the
corresponding video frames to be snippets. The corresponding camera
pose matrices are calculated between every two adjacent frames of
them.
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Fig. 7. Visual Odometry schematic diagram.

Considering more details, when the phone shots a video, the storage
efficiency is slightly lower, and the signal time lags several millisec-
onds, so the delay part is deleted from the CSI data. According to
experience, we only delete the first 200 sampling points, the CSI and
the video frame are aligned accurately.

5.2. Visual odometry pose estimation

The extracted video snippets aim to adjacent frame pose estimation.
In the case of several pairs of matching descriptors, we model the
camera’s rigid motion of two adjacent frames by Epipolar Geometry,
as shown in Fig. 7, and derive the corresponding rotation matrix and
translation matrix of the Euclidean transformation for reconstructing
the movement of the camera lens between the two image planes 𝐼1 and
𝐼2.

𝑂1, 𝑂2 are centers of the same camera at adjacent times, while 𝑝1 is
a feature point in the 𝐼1 plane, and 𝑝2 is a corresponding feature point
in 𝐼2. The two points compose a feature point pair, show that a single
point project on the imaging plane with a different angle and time. ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑂1𝑝1
and ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑂2𝑝2 intersect the object point P in the 3-D space, and then these
three points determine an Epipolar plane. The line of ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑂1𝑂2, and the
imaging plane 𝐼1, 𝐼2 intersect at 𝑒1, 𝑒2, two Epipoles, and 𝑙1 and 𝑙2 are
the intersection lines between the Epipolar plane and the two image
planes, named Epipolar lines. Assume the coordinate of the P in space
is 𝑃 = [𝑋, 𝑌 ,𝑍]𝑇 , so we know that the relationship between the two
image pixels 𝑝1 and 𝑝2 is denoted as (12):

𝐶𝑜𝑟𝑝2 = 𝐾(𝑉𝑅𝑃 + 𝑉𝑇 ) = 𝑉𝑅𝐾𝑃 +𝐾𝑉𝑇 = 𝑉𝑅𝐶𝑜𝑟𝑝1 +𝐾𝑉𝑇 , (12)

where 𝐾 is the camera’s internal parameter matrix, 𝐶𝑜𝑟𝑝𝑖 denotes the
coordinates of 𝑝𝑖, 𝑉𝑅 and 𝑉𝑇 are the rotation matrix and the translation
matrix, respectively. Thus according to the epipolar constraint, the
corresponding pose (13) is derived.

𝑝𝑇2 𝐾
−𝑇 𝑉𝑇 ∙ 𝑉𝑅𝐾−1𝑝1 = 0, (13)

where 𝐸 = 𝑉𝑇 ∙ 𝑉𝑅 is crucial, named Essential Matrix. It is obtained by
using the Eight-point-algorithm, and then the Singular Value Decompo-
sition (SVD) is performed on matrix E to get the singular value matrix
𝛴 = diag(𝜎1, 𝜎2, 𝜎3), then

𝐸 = 𝑉𝑅 𝑑𝑖𝑎𝑔(
𝜎1 + 𝜎2

2
,
𝜎1 + 𝜎2

2
, 0) 𝑉𝑇 𝑡. (14)

At last, the corresponding rotation 𝑉𝑅 and translation matrix 𝑉𝑇 are
obtained by simple decomposition.

We get the video jitter side-channel information from this section
and the CSI in Section 4. Fingers’ behaviors generate the two kinds of
side-channel information, which are highly correlated to be fused for
dual side-channel two-factor authentication. Next, we preprocess the
data so that neural networks can be used for feature extraction and
fusion.
6

6. Multi-modal feature fusion

6.1. Regularization

Review the above sections, and the CSI data is a 54 × 𝑁 matrix.
The value of CSI amplitude is different from the numerical range of
the camera rotation and translation matrix, so we need to normalize
the CSI value before splicing. The matrices of the camera pose are all
parameters close to value 1. After the CSI is normalized, it is directly
spliced with the camera pose matrices.

6.2. Data augmentation

We collected data from multiple volunteers. They set their password
string in advance and entered it several times in a scene. Even so,
the size of the dataset is still relatively small. For the current deep
neural network, data is the primary factor in training, and we need
to perform data augmentation on the data collected by each person
separately. WiCapose applies GaussianBlur, Crop, AverageBlur, Affine
and Pad five operations and randomly select one to three operations for
data augmentation through the imgaug [32] library. Finally, a dataset
containing 39,000 samples is generated. The data quantity is sufficient
for a small neural network training like the one mentioned in our paper.

6.3. Final decision

Large-scale neural networks are not proper because of smartphones’
power and storage capacity. Moreover, the network’s input is a spliced
fusion matrix, and the features of each sub-matrix have no corre-
sponding spatial features, so they are not regarded as actual images.
Furthermore, the ultimate goal is to perform classification certification.
We use a 3-layer, fully connected network to achieve the purpose
based on the above factors. As shown in Fig. 8, the network input is
a 200 × 202 tensor, and the output is the probability produced by
the Sigmoid function. The middle full connect module mainly includes
𝐹𝐶 ⟶ 𝐵𝑁 ⟶ 𝑅𝑒𝐿𝑈 ⟶ 𝐷𝑟𝑜𝑝𝑜𝑢𝑡. In WiCapose, the input matrices
have no prominent local spatial characteristics like those between
adjacent pixels in an image. So WiCapose does not use the classic
convolution operation but uses the nonlinear fitting ability of the multi-
layer fully connected network to fuse dual side-channel information.
The BN layer is used for batch normalization, and the following ReLU
is for nonlinear activation. The Dropout layer is combined to prevent
the overfitting of the fully connected layers and appropriately improve
the training speed. Sigmoid is applied to output prediction probability
results at the end of the entire network. We use the Mean Square
Error (MSE) as the loss function to calculate the loss. After calculating
and fitting the training data in the network training process, try to
make the final output close to the probability 1 (legal user) or 0
(attacker) to achieve binary classification. Note that the enrollment and
authentication process is the same, but we can apply the trained neural
network in smartphones for feature extraction and authentication.

7. Evaluation

7.1. Experimental setup

A regular router is used as the transmitter to send WiFi pack-
ets. The nexmon kernel module updates the firmware of the Google
Nexus5 smartphone, which is regarded as the receiver to collect side-
channel data. We have developed an Android-based prototype Applica-
tion (APP) on Nexus 5 to collect CSI and video information in real-time.
As of the experiment’s completion, the nexmon project only supports
Nexus phones, so Nexus 5 is currently the only experimental model,
shown in Fig. 9(a). However, as the application scenarios increase,
the cost of adopting other mobile hardware to collect CSI is not high.
The regulation scenarios of APP are generally indoor scenarios. We
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Fig. 8. Architecture of FC neural network.
Fig. 9. Experimental setup.
experiment with a standard meeting room. In this way, it can reduce
the number of influencing factors when collecting CSI, the multipath
effects of WiFi signals are all produced by static furniture, and the light
is sufficient, which accomplishes the real indoor scenarios.

The D11 core of the nexmon copies the CSI table from the physical
layer to the shared memory and pushes it to the collection program
in User Datagram Protocol (UDP) packets. The size of shared memory
is limited, and system variables for ordinary WiFi networking are also
stored. It needs to revise the software to improve signal processing
efficiency, especially strengthening the sampling rate. We check the
underlying code of nexmon and optimize the micro-code for CSI col-
lection. In addition, we use a mini PC with an Atheros 9530 NIC as the
router and send data packets through professional software simulation.
Currently, only the beacon packets sent by the router are collected,
so the sample rate increase by eight times and reaches 300 pks/s. For
more stable CSI collection, the packet sending rate of the router is set
at 90 pks/s. Besides, when nexmon collects CSI, a single WiFi antenna
supports 80 Mhz bandwidth and gets 256 subcarriers. However, under
20 Mhz bandwidth, many subcarriers have no data, that is, empty
subcarriers. Then these empty subcarriers can be removed, and finally,
we get 54 subcarriers. That is a 54 × 𝑁 matrix, where 𝑁 is the total
number of sampling points. The video shooting resolution of the rear
camera is 1920 × 1080, and the frame rate is 30 fps.

7.2. Data collection

We recruit 10 volunteers, including 7 men and 3 women, aged be-
tween 24–27. In the conference room, there are 12 sampling positions.
As shown in Figs. 9(b) and 9(c), tables are placed at three different
distances of 1 m, 3 m, and 5 m from the transmitter, and at each
distance, there are four directions: east, west, south, and north, a total
of 12 sampling locations. Furthermore, at a distance of 1 m, we also
collect the data of test subjects who tap the password and hold the
phone by one hand and evaluate the contrast accuracy with the two-
handed operation. During the collection, each volunteer maintains his
7

usual natural posture, holds the smartphone to run the Android APP,
and then taps the password configured by themselves, and the APP
starts to collect the CSI data. By collecting 10 groups at each location
for each volunteer, a total of 13 × 10 = 130 CSI and video tuples are
collected. To prevent slight changes in user posture with different time,
we collect users’ features data on different dates and conduct training
together. Among the 10 volunteers, one user is regarded as the current
legal user of the smartphone, while the other nine users are attackers.
In the model training stage after data augmentation, the current legal
user’s data is labeled as 1, while the same amount of data randomly
sampled from all nine other users is labeled as 0. These two parts
constitute the current legal user dataset. When we train the current
legal user’s model, 70% of the dataset is training set, 10% is used as
the validation set, and the last 20% is for testing.

7.3. Authentication accuracy

Overall Performance. We used the current target user’s data col-
lected on the west side as positive samples and all other users’ current
direction data as negative in the training phase. Because the system
aims to authenticate users, it can be attributed to a one-classification
problem that uses an end-to-end deep neural network for automatic
feature extraction and fusion, avoiding the manual feature extraction
work of the traditional OC-SVM (One-Class SVM). Therefore, for each
system user, a corresponding individual model is trained to constitute
a model library. The overall confusion matrix is shown in Fig. 10.
As it can see that the minimum certification accuracy is 92.44%, and
the overall average accuracy reaches 96.86%. It is worth noting that
this confusion matrix is different from the traditional one. The 𝑥-axis
represents different users, while the ordinate represents different indi-
vidual models. Each row in the figure denotes the predicted probability
produced after inputting different user data into models. The output
probability of user 10 of model 8 reaches 30.37%, but it is far away
from the probability of being incorrectly authenticated as user eight
and is not a false accept. To better represent the balance of precision
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Fig. 10. The fusion matrix of overall accuracy.

Fig. 11. The F1-score of WiCapose.

Fig. 12. Accuracy at different distance.

and recall, we employed the F1-score, as shown in Fig. 11. The highest
F1-score is 96.5%, and the lowest is 92.5%, while the average is 94.8%.

Impact of Distance. Different distances between the transceiver
have different effects on the CSI. The data collected at different dis-
tances of 1 m, 3 m, and 5 m are divided into three parts and input into
the network to train and test the model. Because it is the data from
the same direction, even if it crosses different Fresnel boundaries, the
network can extract the finger behaviors’ unique features. As shown in
Fig. 12, it can be observed that the accuracy of the test at 1 m distance
is the highest, that is when the direction is the same, the quality of the
data collected at a close distance is the best, which can fully reflect the
features of the subject’s finger behaviors. As the distance increases, the
8

Fig. 13. Accuracy at different directions.

Fig. 14. Resistance capability to mimic attack.

Fig. 15. Single factor vs. two factors.

Fig. 16. Accuracy in different training epoch.
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Fig. 17. Accuracy in different backbone NN.

Table 1
Accuracy of holding phone in one-hand.

Users 1 2 3 4 5
Accuracy 0.8517 0.8446 0.8695 0.8627 0.8533

Users 6 7 8 9 10
Accuracy 0.8580 0.8619 0.8556 0.8559 0.8450

signal attenuates, and the action features become less notable, with the
prediction accuracy of the model decreasing.

Impact of Different Directions. CSI is sensitive to the user’s actions
and location. According to the Fresnel zone theory, the effect of the
CSI signal generated by crossing through the Fresnel zone at different
positions is varied. In the experiment, the smartphone is the receiver,
and all tap behaviors are performed on it. When people sit in different
directions, finger movements cross different Fresnel zones to produce
different CSI reception signals. As shown in Fig. 13, it can be observed
that the authentication accuracy of 10 volunteers in four different
directions, the accuracy reach highest, 93.94%, when the subject sits
on the west of the table, and decreases in the order of north, east, and
south. The principal reason is that the WiFi antenna is in the lower part
of Nexus 5, so if volunteers hold the smartphone in the left hand and sit
on the west and north sides of the table, the effects of crossing Fresnel
boundary is the most prominent. In the east, the Fresnel zone’s outer
side is cross, and the accuracy is slightly reduced. When sitting on the
south side of the table, the human body blocks the signal transmission,
making the CSI signal of the finger movement insignificant, resulting
in a decrease of accuracy.

Impact of Hold Posture. In daily life, people holding their smart-
phones with one hand are also typical scenes. It is necessary to analyze
the authentication accuracy when holding a smartphone in one hand.
Volunteers sit 1 meter away from the transmitter, collect authentication
data with one hand with Nexus 5, and feed into the same FC neural
network for training. The results are shown in Table 1, and the average
accuracy is 85.58%. The main reason is that when the smartphone
is operated on one hand, the smartphone needs to be flipped at a
large angle due to palm size and finger length limitation. At this time,
the obtained smartphone rotation and translation matrices’ quality is
dropped.

7.4. Security and effectiveness

Resilience to Mimic Attack. Mimicry attacks are the most preva-
lent attack method. When an attacker witnesses the entire process
of the victim’s system authentication, the first step is to imitate the
attacker’s behavior to attempt a system intrusion. Traditional 1-factor
authentication cannot effectively prevent such attacks, but WiCapose
can effectively block them. It is assumed that the attacker can observe
the entire process of regular user authentication and record the user’s
9

Table 2
Total training time of models.

Backbone MobileNet ShuffleNet Ours

Trainning time 1 h 46 m 22 m 12 m

input process and behavior pattern. To verify the system’s effectiveness,
let a volunteer as the target user, and other users imitate the target
user’s action features to carry out trial attacks on the system. Fig. 14
shows the average false accept rate.

It indicates that even if the user’s entire input process is recorded,
the intrusion success probability is below 2%. Even if the user’s gen-
der and behavior pattern are similar, the imitating attack’s success
probability is only 6%.

Ablation Experiment. To verify that two-factor authentication is
sufficient, we independently use the CSI data collected in the ex-
periment to authenticate users. As shown in Fig. 15, the accuracy
reaches 75.5% by just using CSI. While using both CSI and Video
information for authentication, the accuracy reaches 99.12%. The CSI
encourages mimicry-resistant micro-scale behaviors sensing, while pose
information extracted from video serves as reinforcement in CSI modal
under environment-dependent noise and assistant in enhancing secu-
rity and thus preventing additional attacks. Using nexmon and Nexus
5 smartphones to collect CSI data, the signal’s quality and stability
are moderate due to software and hardware defects. With different
distances, different directions, and angles, the features of CSI are dif-
ferent. Using the FC neural network to extract features of the signal,
the available feature information is limited. It is not sufficient to
use CSI to characterize the user’s behavior features alone so that the
authentication accuracy is much lower.

Impact of Train Epoch. The epoch of training has an important
impact on the accuracy of the model output. As the training epoch
increases, the accuracy also increases in the case of a fixed dataset.
As shown in Fig. 16, the overall accuracy increase has a monotonically
increasing relationship with epoch. It can be observed that the accuracy
increased rapidly before 30 epochs. After that, the accuracy growth
trend slowed down. When it reaches 60 epochs, the accuracy reaches
97.9%. Our model chooses to train 60 epochs based on practice to
achieve a balance between time and accuracy.

Impact of Backbone Neural Network. We analyze the effective-
ness of the FC Neural Network (NN) model. We chose two other
regularly used classic neural network models, MobileNet V2 [33] and
ShuffleNet [34], both of which can be deployed on smart mobile de-
vices. We use the same data, containing both CSI and video calibration
matrices, and train from scratch to obtain certification results. It can
be observed from Fig. 17 that most of the authentication accuracy of
our model is higher than that of MobileNet and ShuffleNet. It is mainly
because ShuffleNet has fewer parameters and cannot well express data
features. As mentioned earlier, there is no distinct contour feature in the
data like in the picture, so the convolution operation used by MobileNet
cannot extract contour features from the matrices data. But user 6 has
a large change in motion when holding the device, and the accuracy
is lower than that of MobileNet. Considering the power consumption
and real-time issues of smartphone terminal equipment, considering
the duration of the training, our model training time is much less than
the others. As we can see from Table 2, WiCapose training only takes
12 min, while MobileNet takes 1 h and 46 min for training 40 epochs,
and ShuffleNet takes 22 min. It shows that our model’s deployment
efficiency is better than the others. It is worth noting that, like many
present deep learning models, although model training takes a long
time, once the deployment is completed, the inference time is very fast.

8. Conclusion

In this paper, we propose WiCapose, which fuses inimitable non-
copyable location-dependent CSI side-channel information and camera
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pose information for two-factor authentication without additional de-
vices and steps. The CSI is collected through the nexmon kernel model,
combined with the pose information extracted by the ORB algorithm,
and fed into a deep neural network. It can fuse both side-channel data
and extract the user finger behaviors’ unique features for authenti-
cation, effectively preventing multiple attacks and strengthening the
security capabilities of systems such as the mobile scenarios.
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